在雙曲線-=1上求一點P,使它到左焦點的距離是它到右焦點距離的兩倍.

解析:設(shè)P點的坐標(biāo)為(x,y),F(xiàn)1、F2分別為雙曲線的左、右焦點.?

∵雙曲線的準(zhǔn)線方程為x=±165,?

=.

∵|PF1|=2|PF2|,

∴P在雙曲線的右支上.?

=.∴x=.

把x=代入方程-=1得

y=±.

所以,P點的坐標(biāo)為(,±).

溫馨提示:此題也可設(shè)P(x0,y0),列方程進行解答.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知雙曲線C:
x2
a2
-
y2
b2
=1(a>0,b>0)
與橢圓
x2
8
+
y2
4
=1
有公共焦點,且以拋物線y2=2x的準(zhǔn)線為雙曲線C的一條準(zhǔn)線.動直線l過雙曲線C的右焦點F且與雙曲線的右支交于P、Q兩點.
(1)求雙曲線C的方程;
(2)無論直線l繞點F怎樣轉(zhuǎn)動,在雙曲線C上是否總存在定點M,使MP⊥MQ恒成立?若存在,求出點M的坐標(biāo),若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知雙曲線C:
x2
a2
-
y2
b2
=1(a>0.b>0)
與橢圓
x2
18
+
y2
14
=1
有共同的焦點,點A(3,
7
)
在雙曲線C上.
(1)求雙曲線C的方程;
(2)以P(1,2)為中點作雙曲線C的一條弦AB,求弦AB所在直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在雙曲線-=1上支上有不同的三點A(x1,y1)、B(x0,6)、C(x2,y2)與焦點F(0,5)的距離成等差數(shù)列.(1)求y1+y2的值;(2)求證:線段AC的中垂線經(jīng)過某一定點,并求出這個定點坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年安徽省亳州市渦陽二中高二第二學(xué)期期末質(zhì)量檢測文科數(shù)學(xué)試題 題型:解答題

已知雙曲線與橢圓有共同的焦點,點在雙曲線C上.
(1)求雙曲線C的方程;
(2)以P(1,2)為中點作雙曲線C的一條弦AB,求弦AB所在直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012屆山東省高二下學(xué)期期末考試文科數(shù)學(xué) 題型:解答題

(本大題滿分13分)

已知雙曲線與橢圓有共同的焦點,點在雙曲線C上.

(1)求雙曲線C的方程;

(2)以P(1,2)為中點作雙曲線C的一條弦AB,求弦AB所在直線的方程.

 

查看答案和解析>>

同步練習(xí)冊答案