如圖,四棱錐P-ABCD中,底面ABCD為菱形,PA⊥平面ABCD,BD交AC于點E,F(xiàn)是線段PC中點,G為線段EC中點.
(Ⅰ)求證:FG∥平面PBD;
(Ⅱ)求證:BD⊥FG.
考點:直線與平面平行的判定,空間中直線與直線之間的位置關(guān)系
專題:空間位置關(guān)系與距離
分析:(Ⅰ)連接PE,G,F(xiàn)為EC和PC的中點,得到FG∥PE,利用線面平行的判定定理可證;
(Ⅱ)利用菱形的性質(zhì)得到BD⊥AC,再由PA⊥面ABCD,得到BD⊥PA,結(jié)合線面垂直的判定定理得到BD⊥平面PAC,進(jìn)一步由線面垂直的性質(zhì)得到所證.
解答: 證明:(Ⅰ)連接PE,G、F為EC和PC的中點,

∴FG∥PE,F(xiàn)G?平面PBD,PE?平面PBD,
∴FG∥平面PBD…(6分)
(Ⅱ)∵菱形ABCD,∴BD⊥AC,
又PA⊥面ABCD,BD?平面ABCD,
∴BD⊥PA,
∵PA?平面PAC,AC?平面PAC,且PA∩AC=A,
∴BD⊥平面PAC,F(xiàn)G?平面PAC,
∴BD⊥FG…(14分)
點評:本題考查了線面平行的判定定理的運用和線面垂直的判定定理和性質(zhì)定理的運用,關(guān)鍵是熟練相關(guān)的定理.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知tan2α+6tanα+7=0,tan2β+6tanβ+7=0,α,β∈(0,π)且α≠β,求α+β的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

拋物線y2=6x的準(zhǔn)線方程為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若a,b∈{-1,0,1,2},則函數(shù)f(x)=ax2+2x+b有零點的概率為   A( 。
A、
13
16
B、
7
8
C、
3
4
D、
5
8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=|x+
1
x
|-|x-
1
x
|.
(1)作出函數(shù)f(x)的圖象,并求當(dāng)x>0時ax>f(x)恒成立的a取值范圍;
(2)關(guān)于x的方程kf2(x)-3kf(x)+6(k-5)=0有解,求實數(shù)k的取值范圍;
(3)關(guān)于x的方程f2(x)+m|f(x)|+n=0(m,n∈R)恰有6個不同的實數(shù)解,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在正方形ABCD中,PA⊥底面ABCD,且PA=AB=2,E、F分別是AB與PD的中點.
(1)求證:PC⊥AF;
(2)求證:AF∥平面PEC;
(3)求證:PD⊥平面AFE.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=sin(ωx-
π
3
)(ω>0)的最小正周期為π.
(1)求ω的值;
(2)用“五點法”作出函數(shù)f(x)在長度為一個周期的閉區(qū)間的圖象;
(3)函數(shù)f(x)的圖象可以由函數(shù)y=sinx的圖象經(jīng)過怎樣的變換得到?寫出變換過程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

將斜邊為
2
的等腰直角三角形繞其一直角邊所在直線旋轉(zhuǎn)一周,所得幾何體的側(cè)面積是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知一個圓柱的底面積為S,其側(cè)面展開圖為正方形,那么圓柱的側(cè)面積為( 。
A、4πS
B、2πS
C、πS
D、
2
3
3
πS

查看答案和解析>>

同步練習(xí)冊答案