已知二面角的平面角為,PA⊥,PB⊥,A、B為垂足,且PA=4,PB=5.設A、B到二面角棱的距離分別為、,當變化時,點(、)的軌跡是如圖所示圖形中的   

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知二面角α-AB-β的平面角是銳角θ,α內(nèi)一點C到β的距離為3,點C到棱AB的距離為4,那么tanθ的值等于( 。
A、
4
5
B、
3
5
C、
3
7
7
D、
1
3
7

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,已知二面角α-l-β的平面角為45°,在半平面α內(nèi)有一個半圓O,其直徑AB在l上,M是這個半圓O上任一點(除A、B外),直線AM、BM與另一個半平面β所成的角分別為θ1、θ2.試證明cos2θ1+cos2θ2為定值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知二面角α-l-β的平面角為θ,PA⊥α,PB⊥β,A、B為垂足,且PA=4,PB=5,點A、B到棱l的距離分別為x,y,當θ變化時,點(x,y)的軌跡是下列圖形中的( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2011•黑龍江一模)已知二面角α-l-β的平面角為θ,點P在二面角內(nèi),PA⊥α,PB⊥β,A,B為垂足,且PA=4,PB=5,設A,B到棱l的距離分別為x,y,當θ變化時,點(x,y)的軌跡方程是( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知二面角α-AB-β的平面角為θ,α內(nèi)一點C到β的距離為3,到棱AB的距離為4,則tanθ等于( 。

查看答案和解析>>

同步練習冊答案