一個(gè)三位自然數(shù)百位,十位,個(gè)位上的數(shù)字依次為a,b,c,當(dāng)且僅當(dāng)a>b,b<c時(shí)稱為“凹數(shù)”(如213,312等),若a,b,c∈{1,2,3,4}且a,b,c互不相同,則這個(gè)三位數(shù)是“凹數(shù)”的概率是( 。
A、
1
6
B、
5
24
C、
1
3
D、
7
24
考點(diǎn):古典概型及其概率計(jì)算公式
專題:概率與統(tǒng)計(jì)
分析:根據(jù)題意,分析“凹數(shù)”的定義,可得要得到一個(gè)滿足a≠c的三位“凹數(shù)”,在{1,2,3,4}的4個(gè)整數(shù)中任取3個(gè)數(shù)字,組成三位數(shù),再將最小的放在十位上,剩余的2個(gè)數(shù)字分別放在百、個(gè)位上即可,再利用古典概型概率計(jì)算公式即可得到所求概率.
解答: 解:根據(jù)題意,要得到一個(gè)滿足a≠c的三位“凹數(shù)”,
在{1,2,3,4}的4個(gè)整數(shù)中任取3個(gè)不同的數(shù)組成三位數(shù),有C43×
A
3
3
=24種取法,
在{1,2,3,4}的4個(gè)整數(shù)中任取3個(gè)不同的數(shù),將最小的放在十位上,剩余的2個(gè)數(shù)字分別放在百、個(gè)位上,有C43×2=8種情況,
則這個(gè)三位數(shù)是“凹數(shù)”的概率是
8
24
=
1
3

故選:C.
點(diǎn)評(píng):本題考查組合數(shù)公式的運(yùn)用,關(guān)鍵在于根據(jù)題干中所給的“凹數(shù)”的定義,再利用古典概型概率計(jì)算公式即得答案.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)是定義在R上的奇函數(shù),若f(x)的最小正周期為3,且f(1)>1,f(2)=
2m-3
m+1
,則m的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=aln(x+1)-x2,若在區(qū)間(0,1)內(nèi)任取兩個(gè)不同實(shí)數(shù)m,n,不等式
f(m+1)-f(n+1)
m-n
<1恒成立,則實(shí)數(shù)a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x)為奇函數(shù),當(dāng)x>0時(shí),f(x)=(1-x)x,則x<0時(shí),f(x)=( 。
A、-x(1+x)
B、x(1+x)
C、-x(1-x)
D、x (1-x)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知銳角△ABC中,|
AB
|=4,|
AC
|=1
,△ABC的面積為
3
,則
AB
AC
的值為( 。
A、-2B、2C、4D、-4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)f(x)=loga|x+1|(a>0,a≠1),當(dāng)x∈(-1,0)時(shí),恒有f(x)>0,有( 。
A、0<a<1且f(x)在(-∞,-1)上是增函數(shù)
B、0<a<1且f(x)在(-∞,-1)上是減函數(shù)
C、a>1且f(x)在(-1,+∞)上是增函數(shù)
D、a>1且f(x)在(-1,+∞)上是減函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如果函數(shù)f(x)=sin(ωx+
π
6
)(ω>0)的最小正周期為π,則ω的值為( 。
A、
1
2
B、1
C、2
D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

直線l過(guò)雙曲線的右焦點(diǎn),斜率為
2
,若l與雙曲線的兩個(gè)交點(diǎn)分別在其兩支上,則雙曲線的離心率的取值范圍為(  )
A、[
2
,+∞)
B、(2,+∞)
C、[
3
,+∞)
D、(
3
,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知點(diǎn)A(1,a),圓:x2+y2=4.
(1)若過(guò)點(diǎn)A的圓的切線只有一條,求a的值及切線方程;
(2)若過(guò)點(diǎn)A且在兩坐標(biāo)軸上截距相等的直線與圓相切,求a的值及切線方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案