在邊長為2的正方形ABCD的內(nèi)部任取一點(diǎn)P,使得點(diǎn)P到正方形ABCD各頂點(diǎn)的距離都大于1的概率是
 
考點(diǎn):幾何概型
專題:概率與統(tǒng)計(jì)
分析:根據(jù)已知條件,求出滿足條件的正方形ABCD的面積,及動(dòng)點(diǎn)P到定點(diǎn)A的距離|PA|<1對(duì)應(yīng)平面區(qū)域的面積,代入幾何概型計(jì)算公式,即可求出答案.
解答: 解:由題意,正方形的面積為2×2=4,使得點(diǎn)P到正方形ABCD各頂點(diǎn)的距離都大于1的P的集合為如圖的陰影部分的面積為4-π,
由幾何概型的公式點(diǎn)P到正方形ABCD各頂點(diǎn)的距離都大于1的概率是得
4-π
4

故答案為:
4-π
4
點(diǎn)評(píng):本題考查了幾何概型的運(yùn)用;幾何概型的概率估算公式中的“幾何度量”,可以為線段長度、面積、體積等,而且這個(gè)“幾何度量”只與“大小”有關(guān),而與形狀和位置無關(guān).解決的步驟均為:求出滿足條件A的基本事件對(duì)應(yīng)的“幾何度量”N(A),再求出總的基本事件對(duì)應(yīng)的“幾何度量”N,最后根據(jù)公式求值.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如果輸入n=1,那么執(zhí)行如圖中算法的結(jié)果是輸出
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

小河同側(cè)有兩個(gè)村莊A,B,兩村莊計(jì)劃于河上共建一水電站發(fā)電供兩村莊使用.已知兩村莊到河邊的垂直距離分別為300米和700米,且兩村相距500米,問水電站建于何處,送電到兩村電線用料最省.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù) f(x)=sin(ωx+φ)+b的圖象如圖,則 f(x)的解析式S=f(1)+f(2)+f(3)+…+f(2015)的值分別為( 。
A、f(x)=
1
2
sin2πx+1,S=2015
B、f(x)=
1
2
sin2πx+1,S=2014
1
2
C、f(x)=
1
2
sin
π
2
x+1,S=2015
D、f(x)=
1
2
sin
π
2
x+1,S=2014
1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

計(jì)算機(jī)執(zhí)行如圖的程序段后,輸出的結(jié)果是( 。
A、1B、2C、3D、-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在一個(gè)邊長為2的正方形中有一封閉的“★”型陰影區(qū)域,向正方形中隨機(jī)撒入200粒豆子,若恰有40粒落在陰影區(qū)域內(nèi),則該陰影部分的面積約為( 。
A、
2
5
B、
4
5
C、
6
5
D、
18
5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

有一塊以O(shè)為圓心的半圓形空地,要在這塊空地上劃出一個(gè)內(nèi)接矩形ABCD開辟為綠地,使其一邊AD落在半圓的直徑上,另外兩點(diǎn)B,C落在半圓的圓周上,已知半圓的半徑長為a,則當(dāng)矩形ABCD的面積最大時(shí),AD的長為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,A=30°,a=2,則
a+b+c
sinA+sinB+sinC
的值為(  )
A、2
B、
3
C、
1
2
D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
a
=(1,x,-3),
b
=(2,4,y),且
a
b
,那么x+y等于( 。
A、-4B、-2C、2D、4

查看答案和解析>>

同步練習(xí)冊(cè)答案