將參數(shù)方程
x=2t2
y=2t
(t為參數(shù))化為普通方程為
 
考點(diǎn):參數(shù)方程化成普通方程
專題:計(jì)算題,坐標(biāo)系和參數(shù)方程
分析:參數(shù)方程
x=2t2
y=2t
(t為參數(shù)),利用代入法,可得普通方程.
解答:解:參數(shù)方程
x=2t2
y=2t
(t為參數(shù)),利用代入法,可得普通方程為y2=2x.
故答案為:y2=2x.
點(diǎn)評(píng):本題考查參數(shù)方程與普通方程的互化,屬基礎(chǔ)題,要注意互化后變量范圍的一致性.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

直線
x=1+
4
5
t
y=-1-
3
5
t
(t為參數(shù))被曲線p=2
2
cos(θ+
π
4
)所截得的弦長(zhǎng)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

曲線C1:ρ2-2ρcosθ-1=0 上的點(diǎn)到曲線 C2
x=3-t
y=1+t
,(t為參數(shù))上的點(diǎn)的最短距離為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

將參數(shù)方程
x=1+
1
2
t
y=5+
3
2
t
(t為參數(shù))化成普通方程為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在平面直角坐標(biāo)系中,曲線C1的參數(shù)方程為
x=acosφ
y=bsinφ
(a>b>0,φ為參數(shù)),以Ο為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,曲線C2是圓心在極軸上且經(jīng)過(guò)極點(diǎn)的圓,已知曲線C1上的點(diǎn)M(2,
3
),對(duì)應(yīng)的參數(shù)φ=
π
3
,θ=
π
4
與曲線C2交于點(diǎn)D(
2
π
4

(Ⅰ)求曲線C1,C2的普通方程;
(Ⅱ)A(ρ1,θ),B(ρ2,θ+
π
2
)是曲線C1上的兩點(diǎn),求
1
ρ12
+
1
ρ22
的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在平面直角坐標(biāo)系中,以原點(diǎn)為極點(diǎn),x軸正半軸為極軸同時(shí)建立極坐標(biāo)系,若直線l的極坐標(biāo)方程為ρsin(θ+
π
4
)=
2
2
,曲線C的參數(shù)方程為
x=-1+cosθ
y=sinθ
(θ為參數(shù)),則在曲線C上點(diǎn)到直線l上點(diǎn)的最小距離為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在平面直角坐標(biāo)系xoy中,以坐標(biāo)原點(diǎn)為極點(diǎn),以x軸的非負(fù)半軸為極軸,建立極坐標(biāo)系,已知直線l的參數(shù)方程為
x=
2
+t
y=t
(t為參數(shù)),圓C的極坐標(biāo)方程是ρ=1.
(1)求直線l與圓C的公共點(diǎn)個(gè)數(shù);
(2)在平面直角坐標(biāo)系中,圓C經(jīng)過(guò)伸縮變換
x′=x
y′=2y
得到曲線C′,設(shè)M(x,y)為曲線C′上一點(diǎn),求4x2+xy+y2的最大值,并求相應(yīng)點(diǎn)M的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2015屆四川省成都市高三10月考理科數(shù)學(xué)試卷(解析版) 題型:填空題

當(dāng)時(shí),不等式恒成立,則實(shí)數(shù)a的取值范圍是 .

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2015屆四川省成都實(shí)驗(yàn)外國(guó)語(yǔ)高三11月月考理科數(shù)學(xué)試卷(解析版) 題型:填空題

無(wú)重復(fù)數(shù)字的五位數(shù)a1a2a3a4a5 , 當(dāng)a1<a2, a2>a3, a3<a4, a4>a5時(shí)稱為波形數(shù),則由1,2,3,4,5任意組成的一個(gè)沒(méi)有重復(fù)數(shù)字的五位數(shù)是波形數(shù)的概率為 .

 

查看答案和解析>>

同步練習(xí)冊(cè)答案