13.觀察下列等式:
$\frac{1}{1×2}=1-\frac{1}{2}$,$\frac{1}{2×3}=\frac{1}{2}-\frac{1}{3}$,$\frac{1}{3×4}=\frac{1}{3}-\frac{1}{4}$,…
計(jì)算:
$\frac{1}{1×2}+\frac{1}{2×3}+\frac{1}{3×4}+\frac{1}{4×5}+\frac{1}{5×6}$=$\frac{5}{6}$.

分析 由題意,利用裂項(xiàng)法,可得結(jié)論.

解答 解:由題意,利用裂項(xiàng)法,可得:
$\frac{1}{1×2}+\frac{1}{2×3}+\frac{1}{3×4}+\frac{1}{4×5}+\frac{1}{5×6}$=1-$\frac{1}{2}$+$\frac{1}{2}$-$\frac{1}{3}$+…+$\frac{1}{5}$-$\frac{1}{6}$=$\frac{5}{6}$.
故答案為:$\frac{5}{6}$.

點(diǎn)評(píng) 本題考查歸納推理,考查裂項(xiàng)法的運(yùn)用,比較基礎(chǔ).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.在直角坐標(biāo)系xOy中直線(xiàn)l過(guò)點(diǎn)P($\frac{{\sqrt{10}}}{2}$,0)且傾斜角為α,在極坐標(biāo)系(與直角坐標(biāo)系xOy取相同的長(zhǎng)度單位,且以原點(diǎn)O為極點(diǎn),以x軸正半軸為極軸)中曲線(xiàn)C的方程為ρ2(1+sin2θ)=1,已知直線(xiàn)l與曲線(xiàn)C交于不同兩點(diǎn)M,N.
(1)求曲線(xiàn)C的直角坐標(biāo)方程;
(2)求$\frac{{|{PM}|•|{PN}|}}{{|{MN}|}}$的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.以坐標(biāo)原點(diǎn)為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,曲線(xiàn)C的極坐標(biāo)方程為2ρ2cos2θ-3ρ2sin2θ=30,圓O的圓心在原點(diǎn),經(jīng)過(guò)曲線(xiàn)C的右焦點(diǎn)F.
(1)求曲線(xiàn)C和圓O的標(biāo)準(zhǔn)方程;
(2)已知直線(xiàn)l的參數(shù)方程為$\left\{\begin{array}{l}x=4+tcosφ\(chéng)\ y=-3+tsinφ\(chéng)end{array}$(t為參數(shù))與圓O交于B,C兩點(diǎn),其中B在第四象限,C在第一象限,若|BC|=5,∠FOC=α,求sin($\frac{π}{3}$-α)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.已知f(x)=$\left\{{\begin{array}{l}{{{log}_{\frac{1}{16}}}(x+1),x<0}\\{-{x^2}+x,x≥0}\end{array}}$,則關(guān)于x的方程f(x)=m(m∈R)恰有三個(gè)不同的實(shí)數(shù)根a,b,c,則a+b+c的取值范圍是( 。
A.($\frac{1}{4}$,$\frac{1}{2}$)B.($\frac{1}{4}$,1)C.($\frac{1}{2}$,1)D.($\frac{1}{2}$,$\frac{3}{4}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.如圖的三角形數(shù)陣中,滿(mǎn)足:
(1)第1行的數(shù)為1;
(2)第n(n≥2)行首尾兩數(shù)均為n,其余的數(shù)都等于它肩上的兩個(gè)數(shù)相加.
則第10行中第2個(gè)數(shù)是46.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.函數(shù)f(x)=lnx-$\frac{3}{x}$零點(diǎn)所在的大致區(qū)間為( 。
A.(2,3)B.(1,2)C.$(1\;,\;\frac{1}{e})$D.(e,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.在平面直角坐標(biāo)系xOy中,已知曲線(xiàn)C的參數(shù)方程為$\left\{\begin{array}{l}{x=t+\frac{1}{t}}\\{y=t-\frac{1}{t}}\end{array}\right.$(t為參數(shù)),以原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,直線(xiàn)l的極坐標(biāo)方程為ρsin($θ-\frac{π}{3}$)=2.
(1)試寫(xiě)出直線(xiàn)l與曲線(xiàn)C的直角坐標(biāo)方程;
(2)若過(guò)點(diǎn)E(3,0)與直線(xiàn)l平行的直線(xiàn)1′與曲線(xiàn)C交于A、B兩點(diǎn),試求|AB|的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.已知f(x)=$\left\{\begin{array}{l}{2^x}-1\;,\;x≤0\\{log_2}(x+1)\;,\;x>0\end{array}$若f(x)=-$\frac{3}{4}$,則x的值是-2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.如圖,圓O的直徑AB長(zhǎng)度為10,CD是點(diǎn)C處的切線(xiàn),AD⊥CD,若BC=8,則CD=(  )
A.$\frac{15}{2}$B.$\frac{40}{3}$C.$\frac{18}{5}$D.$\frac{24}{5}$

查看答案和解析>>

同步練習(xí)冊(cè)答案