有一個(gè)棱長(zhǎng)為1的正方體,按任意方向正投影, 其投影面積的最大值是
A.B.C.D.
D
解:因?yàn)橛幸粋(gè)棱長(zhǎng)為1的正方體,按對(duì)角面方向正投影, 其投影面積為最大且最大值為,選D
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,在三棱錐A-BCD中,側(cè)面ABD、ACD是全等的直角三角形,AD是公共的斜邊,且AD=,BD=CD=1,另一個(gè)側(cè)面是正三角形

(1)求證:AD^BC
(2)求二面角B-AC-D的大小
(3)在直線AC上是否存在一點(diǎn)E,使ED與面BCD成30°角?若存在,確定E的位置;若 
不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

在邊長(zhǎng)為的正方形ABCD中,E、F分別為BC、CD的中點(diǎn),M、N分別為AB、CF的中點(diǎn),現(xiàn)沿AE、AF、EF折疊,使B、C、D三點(diǎn)重合,構(gòu)成一個(gè)三棱錐.
(I)判別MN與平面AEF的位置關(guān)系,并給出證明;
(II)求多面體E-AFMN的體積.
                 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿分12分)如圖:直角梯形ABCD中,AD∥BC,∠ABC=90°,E、F分別是邊AD和BC上的點(diǎn),且EF∥AB,AD ="2AE" ="2AB" =" 4AF=" 4,將四邊形EFCD沿EF折起使AE=AD.
(1)求證:AF∥平面CBD;
(2)求平面CBD與平面ABFE夾角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,已知球的半徑為,球內(nèi)接圓錐的高為,體積為,
 
(1)寫出以表示的函數(shù)關(guān)系式;
(2)當(dāng)為何值時(shí),有最大值,并求出該最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

正方體中,側(cè)面內(nèi)有一動(dòng)點(diǎn)到直線與直線的距離相等,則動(dòng)點(diǎn)的軌跡為一段 (  )
A.圓弧B.雙曲線弧C.橢圓弧D.拋物線弧

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

三菱柱ABC-A1B1C1中,底面邊長(zhǎng)和側(cè)棱長(zhǎng)都相等,  BAA1=CAA1=60°則異面直線AB1與BC1所成角的余弦值為_(kāi)___________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如圖,半徑為的半球的底面圓在平面內(nèi),過(guò)點(diǎn)作平面的垂線交半球面于點(diǎn),過(guò)圓的直徑作平面角的平面與半球面相交,所得交線上到平面的距離最大的點(diǎn)為,該交線上的一點(diǎn)滿足,則、兩點(diǎn)間的球面距離為(   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖,在正方體中,二面角的正切值為       ___

查看答案和解析>>

同步練習(xí)冊(cè)答案