分析 (Ⅰ)利用直方圖與平行四邊形的性質(zhì)可得:BC1∥AD1,利用線面平行的判定定理可得BC1∥平面AB1D1,同理可得:BD∥平面AB1D1,即可證明:平面C1BD∥平面AB1D1.
(Ⅱ):如圖,連接C1O,利用直方圖的性質(zhì)與線面垂直的性質(zhì)定理可得:AA1⊥BD,又BD⊥AC,可得BO⊥平面ACC1A1.因此∠OC1B為直線BC1與平面ACC1A1所成的角.利用直角三角形的邊角關(guān)系即可得出.
解答 (Ⅰ)證明:∵ABCD-A1B1C1D1為正方體,
∴在平行四邊形ABC1D1中,BC1∥AD1,
又AD1?平面AB1D1,BC1?平面AB1D1,
∴BC1∥平面AB1D1,
同理可得:BD∥平面AB1D1,且BC1∩BD=B,
∴平面C1BD∥平面AB1D1.
(Ⅱ)解:如圖,連接C1O,
由AA1⊥平面ABCD,又BD?平面ABCD,∴AA1⊥BD,
又∵四邊形ABCD為正方形,∴BD⊥AC,又AC∩AA1=A,
∴BO⊥平面ACC1A1.∴C1O為BC1在平面ACC1A1內(nèi)的射影
∴∠OC1B為直線BC1與平面ACC1A1所成的角.
在 Rt△OC1B中,∵$BO=\frac{1}{2}B{C_1}$,∴$sin∠O{C_1}B=\frac{BO}{{B{C_1}}}=\frac{1}{2}$,
又∵$∠O{C_1}B∈(0,\frac{π}{2})$,∴$∠O{C_1}B=\frac{π}{6}$,
∴直線BC1與平面ACC1A1所成的角為$\frac{π}{6}$.
點(diǎn)評(píng) 本題考查了空間位置關(guān)系與空間角、線面、面面平行的判定與性質(zhì)定理、線面、面面垂直的判定與性質(zhì)定理、空間角,考查了推理能力與計(jì)算能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 6 | B. | 7 | C. | 8 | D. | 7或-8 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 0 | B. | 15 | C. | 16 | D. | 8 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com