20.設(shè)復(fù)數(shù)z1=1-3i,z2=3+2i,則z1+z2在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)位于第四象限.

分析 根據(jù)復(fù)數(shù)的加法進(jìn)行化簡(jiǎn),結(jié)合復(fù)數(shù)的幾何意義進(jìn)行判斷即可.

解答 解:∵z1=1-3i,z2=3+2i,
∴z1+z2=1-3i+3+2i=4-i,
對(duì)應(yīng)的坐標(biāo)為(4,-1)位于第四象限,
故答案為:四

點(diǎn)評(píng) 本題主要考查復(fù)數(shù)的幾何意義的應(yīng)用,根據(jù)復(fù)數(shù)加法的四種運(yùn)算進(jìn)行化簡(jiǎn)是解決本題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知數(shù)列{an}是等比數(shù)列,若a2a5a8<0,則( 。
A.存在k∈N,使a4k+1>0B.任給k∈N,使a${\;}_{{2}^{k}}$+1>0
C.不存在k∈N,使a3k+2<0D.$\sqrt{{a}_{4n+1}{a}_{4n+9}}$=-a4n+5(n∈N)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.如圖,長(zhǎng)方體ABCD-A1B1C1D1中,AB=2,BC=CC1=1,點(diǎn)P是棱CD上的一點(diǎn),DP=λ.
(Ⅰ)當(dāng)$λ=\frac{3}{2}$時(shí),求證:A1C⊥平面PBC1;
(Ⅱ)當(dāng)直線A1C與平面PBC1所成角的正切值為$2\sqrt{2}$時(shí),求λ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.下列向量組中,能作為表示它們所在平面內(nèi)所有向量的一組基底的是( 。
A.$\overrightarrow a$=(1,2),$\overrightarrow b$=(0,0)B.$\overrightarrow a$=(1,-2),$\overrightarrow b$=(3,5)C.$\overrightarrow a$=(3,2),$\overrightarrow b$=(9,6)D.$\overrightarrow a$=(-3,3),$\overrightarrow b$=(2,-2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.“北祠堂”是我校著名的一支學(xué)生樂隊(duì),對(duì)于2015年我!靶@周末文藝廣場(chǎng)”活動(dòng)中“北祠堂”樂隊(duì)的表現(xiàn),在高一年級(jí)學(xué)生中投票情況的統(tǒng)計(jì)結(jié)果見表:
喜愛程度非常喜歡一般不喜歡
人數(shù)500200100
現(xiàn)采用分層抽樣的方法從所有參與對(duì)“北祠堂”投票的800名學(xué)生中抽取一個(gè)容量為n的樣本,若從不喜歡“北祠堂”的100名學(xué)生中抽取的人數(shù)是5人.
(1)求n的值;
(2)若從不喜歡“北祠堂”的學(xué)生中抽取的5人中恰有3名男生(記為a1,a2,a3)2名女生(記為b1,b2),現(xiàn)將此5人看成一個(gè)總體,從中隨機(jī)選出2人,列出所有可能的結(jié)果;
(3)在(2)的條件下,求選出的2人中至少有1名女生的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.“0<x<4”的一個(gè)充分不必要條件為( 。
A.0<x<4B.0<x<2C.x>0D.x<4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.閱讀如圖所示的程序框圖,若要使輸入的x值與輸出的y值相等,則滿足條件的x有( 。
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.如圖,H是球O的直徑AB上一點(diǎn),平面α截球O所得截面的面積為9π,平面α∩AB=H,AH:HB=1:3,且點(diǎn)A到平面α的距離為1,則球O的表面積為40π.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知△ABC中,c=$\sqrt{2}$,a=4,B=135°,則b等于( 。
A.10B.$\sqrt{10}$C.26D.$\sqrt{26}$

查看答案和解析>>

同步練習(xí)冊(cè)答案