分析:(1)設(shè)
=t,則t≥0,原函數(shù)可化為:y=t
2+2t-1=(t+1)
2-2,當(dāng)t≥0時(shí),y為增函數(shù),即可求解;
(2)原式可化為:(2y-1)x
2-(2y-1)x+3y-1=0,當(dāng)y=
時(shí),方程無解;當(dāng)y≠
時(shí),根據(jù)△≥0即可求解;
解答:解:(1)設(shè)
=t,則t≥0,原函數(shù)可化為:y=t
2+2t-1=(t+1)
2-2,
當(dāng)t≥0時(shí),y為增函數(shù),
故當(dāng)t=0時(shí),y的最小值為-1,
故函數(shù)的值域?yàn)椋篬-1,+∞);
(2)原式可化為:(2y-1)x
2-(2y-1)x+3y-1=0,
當(dāng)y=
時(shí),方程無解;
當(dāng)y≠
時(shí),△=(2y-1)
2-4(2y-1)(3y-1)≥0,
整理得:20y
2-16y+3≤0,
解得:
≤y<
,
故原函數(shù)的值域?yàn)椋篬
,
).
點(diǎn)評:本題考查了函數(shù)的值域,難度一般,關(guān)鍵是掌握根據(jù)配方法及判別式法求函數(shù)的值域.