已知i是虛數(shù)單位,則復(fù)數(shù)z=(3-2i)(2+i)在復(fù)平面中對(duì)應(yīng)的點(diǎn)位于
 
考點(diǎn):復(fù)數(shù)代數(shù)形式的乘除運(yùn)算
專題:數(shù)系的擴(kuò)充和復(fù)數(shù)
分析:根據(jù)復(fù)數(shù)的運(yùn)算法則將復(fù)數(shù)進(jìn)行化簡(jiǎn),利用復(fù)數(shù)的幾何意義即可得到結(jié)論.
解答: 解:復(fù)數(shù)z=(3-2i)(2+i)=8-i,
則對(duì)應(yīng)的點(diǎn)的坐標(biāo)為(8,-1),位于第四象限,
故答案為:四.
點(diǎn)評(píng):本題主要考查復(fù)數(shù)的幾何意義,利用復(fù)數(shù)的運(yùn)算法則進(jìn)行化簡(jiǎn)是解決本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=tanx+sinx+2015,若f(m)=2,則f(-m)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
ax+1
ax-1
+loga
x-1
x+1
(a>0且a≠1)且f(m)=7(m≠0),則f(-m)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知一組正數(shù)x1,x2,x3的方差s2=
1
3
(x12+x22+x32-12),則數(shù)據(jù)x1+1,x2+1,x3+1的平均數(shù)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知向量
e1
=(-1,2),
e2
=(5,-2),向量
a
=(4,0),用
e1
、
e2
表示向量
a
,則
a
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知a∈R,復(fù)數(shù)z=(a-2i)(1+i)(i為虛數(shù)單位)在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)為M,則“a=0”是“點(diǎn)M在第四象限”的( 。
A、充分而不必要條件
B、必要而不充分條件
C、充分必要條件
D、既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知t∈R,i為虛數(shù)單位,復(fù)數(shù)z1=3+4i,z2=t+i,且z1•z2是實(shí)數(shù),則t等于( 。
A、
3
4
B、
4
3
C、-
4
3
D、-
3
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知Rt△ABC中,∠B=90°,若
AB
AC
=3,
CA
CB
=1,則|
AC
|=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=loga(x+1),g(x)=loga(1-x)(a>0且a≠1),令F(x)=f(x)-g(x).
(1)求函數(shù)y=F(x)的定義域;
(2)判斷函數(shù)y=F(x)的奇偶性并說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案