【題目】設(shè)橢圓E: 的焦點(diǎn)在x軸上
(1)若橢圓E的焦距為1,求橢圓E的方程;
(2)設(shè)F1 , F2分別是橢圓E的左、右焦點(diǎn),P為橢圓E上第一象限內(nèi)的點(diǎn),直線F2P交y軸于點(diǎn)Q,并且F1P⊥F1Q,證明:當(dāng)a變化時(shí),點(diǎn)P在某定直線上.
【答案】
(1)解:∵橢圓E的焦距為1,∴ ,解得 .
故橢圓E的方程為
(2)解:設(shè)P(x0,y0),F(xiàn)1(﹣c,0),F(xiàn)2(c,0),其中 .
由題設(shè)可知:x0≠c.則直線F1P的斜率 = ,直線F2P的斜率 = .
故直線F2P的方程為 .
令x=0,解得 .即點(diǎn)Q .
因此直線F1Q的斜率 = .
∵F1Q⊥F1P,∴ = .
化為 .
聯(lián)立 ,及x0>0,y0>0,
解得 , .
即點(diǎn)P在定直線x+y=1上
【解析】(1)利用橢圓的標(biāo)準(zhǔn)方程和幾何性質(zhì)即可得出 ,解出即可;(2)設(shè)P(x0 , y0),F(xiàn)1(﹣c,0),F(xiàn)2(c,0),其中 .利用斜率的計(jì)算公式和點(diǎn)斜式即可得出直線F1P的斜率 = ,直線F2P的方程為 .即可得出Q .得到直線F1Q的斜率 = .利用F1Q⊥F1P,可得 = .化為 .與橢圓的方程聯(lián)立即可解出點(diǎn)P的坐標(biāo).
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解橢圓的標(biāo)準(zhǔn)方程的相關(guān)知識(shí),掌握橢圓標(biāo)準(zhǔn)方程焦點(diǎn)在x軸:,焦點(diǎn)在y軸:.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方體ABCD﹣A1B1C1D1的棱長為1,P為BC的中點(diǎn),Q為線段CC1上的動(dòng)點(diǎn),過點(diǎn)A,P,Q的平面截該正方體所得的截面記為S,則下列命題正確的是(寫出所有正確命題的編號(hào)).
①當(dāng)0<CQ< 時(shí),S為四邊形
②當(dāng)CQ= 時(shí),S為等腰梯形
③當(dāng)CQ= 時(shí),S與C1D1的交點(diǎn)R滿足C1R=
④當(dāng) <CQ<1時(shí),S為六邊形
⑤當(dāng)CQ=1時(shí),S的面積為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓C經(jīng)過P(4,-2),Q(-1,3)兩點(diǎn),且圓心C在直線x+y-1=0上.
(1)求圓C的方程;
(2)若直線l∥PQ,且l與圓C交于點(diǎn)A,B且以線段AB為直徑的圓經(jīng)過坐標(biāo)原點(diǎn),求直線l的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知,現(xiàn)給出如下結(jié)論:
①; ②; ③; ④.
其中正確結(jié)論的序號(hào)為( )
A. ②③ B. ①④ C. ②④ D. ①③
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某高校數(shù)學(xué)系計(jì)劃在周六和周日各舉行一次主題不同的心理測試活動(dòng),分別由李老師和張老師負(fù)責(zé),已知該系共有n位學(xué)生,每次活動(dòng)均需該系k位學(xué)生參加(n和k都是固定的正整數(shù)),假設(shè)李老師和張老師分別將各自活動(dòng)通知的信息獨(dú)立、隨機(jī)地發(fā)給該系k位學(xué)生,且所發(fā)信息都能收到,記該系收到李老師或張老師所發(fā)活動(dòng)通知信息的學(xué)生人數(shù)為X.
(1)求該系學(xué)生甲收到李老師或張老師所發(fā)活動(dòng)通知信息的概率;
(2)求使P(X=m)取得最大值的整數(shù)m.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)有直線和平面,則下列四個(gè)命題中,正確的是( )
A. 若m∥α,n∥α,則m∥nB. 若mα,nα,m∥β,l∥β,則α∥β
C. 若α⊥β,mα,則m⊥βD. 若α⊥β,m⊥β,mα,則m∥α
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線的參數(shù)方程為 (t為參數(shù)),其中p>0,焦點(diǎn)為F,準(zhǔn)線為l.過拋物線上一點(diǎn)M作l的垂線,垂足為E.若|EF|=|MF|,點(diǎn)M的橫坐標(biāo)是3,則p= .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com