設橢圓的離心率為,點、,原點到直線的距離為
(1)求橢圓的方程;
(2)設點,點在橢圓上(與、均不重合),點在直線上,若直線的方程為,且,試求直線的方程.
(1)(2)

試題分析:解:(1)由                    2分
由點,0),(0,)知直線的方程為
于是可得直線的方程為                           4分
因此,得,
所以橢圓的方程為                         6分
(2)由(Ⅰ)知、的坐標依次為(2,0)、,
因為直線經(jīng)過點,所以,得
即得直線的方程為                          8分
因為,所以,即         9分
的坐標為,則
,即直線的斜率為4                12分
點評:主要是考查了直線與橢圓的位置關(guān)系,以及點到直線的距離公式的綜合運用,屬于中檔題。
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:不詳 題型:解答題

已知極坐標系的極點為直角坐標系的原點,極軸為x軸的正半軸,兩種坐標系中的長度單位相同,已知曲線的極坐標方程為
(1)求的直角坐標方程;
(2)直線為參數(shù))與曲線C交于,兩點,與軸交于,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知是過拋物線焦點的弦,,則中點的橫坐標是        

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知M (-3,0)﹑N (3,0),P為坐標平面上的動點,且直線PM與直線PN的斜率之積為常數(shù)m (m,m0),點P的軌跡加上M、N兩點構(gòu)成曲線C.
求曲線C的方程并討論曲線C的形狀;
(2) 若,曲線C過點Q (2,0) 斜率為的直線與曲線C交于不同的兩點AB,AB中點為R,直線OR (O為坐標原點)的斜率為,求證 為定值;
(3) 在(2)的條件下,設,且,求y軸上的截距的變化范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知拋物線的焦點與橢圓的右焦點重合.(Ⅰ)求拋物線的方程;
(Ⅱ)動直線恒過點與拋物線交于A、B兩點,與軸交于C點,請你觀察并判斷:在線段MAMB,MC,AB中,哪三條線段的長總能構(gòu)成等比數(shù)列?說明你的結(jié)論并給出證明.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

橢圓(為參數(shù))的離心率是        .

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知過拋物線y2 =2px(p>0)的焦點F的直線x-my+m=0與拋物線交于A,B兩點,且△OAB(O為坐標原點)的面積為2,則m6+ m4的值為(   )
A.1B. 2 C.3D.4

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知橢圓的右焦點,過原點和軸不重合的直線與橢圓 相交于,兩點,且,最小值為
(Ⅰ)求橢圓的方程;
(Ⅱ)若圓:的切線與橢圓相交于,兩點,當兩點橫坐標不相等時,問:是否垂直?若垂直,請給出證明;若不垂直,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知點是雙曲線和圓的一個交點,是雙曲線的兩個焦點,,則雙曲線的離心率為
A.B.C.2D.

查看答案和解析>>

同步練習冊答案