精英家教網 > 高中數學 > 題目詳情

【題目】已知集合A={x|2≤2x≤4},B={x|0<log2x<2},則A∪B=(
A.[1,4]
B.[1,4)
C.(1,2)
D.[1,2]

【答案】B
【解析】解:由A中不等式變形得:21≤2x≤22,

解得:1≤x≤2,即A=[1,2],

由B中不等式變形得:log21=0<log2x<2=log24,

解得:1<x<4,即B=(1,4),

則A∪B=[1,4),

故選:B.

【考點精析】關于本題考查的集合的并集運算和集合的交集運算,需要了解并集的性質:(1)AA∪B,BA∪B,A∪A=A,A∪=A,A∪B=B∪A;(2)若A∪B=B,則AB,反之也成立;交集的性質:(1)A∩BA,A∩BB,A∩A=A,A∩=,A∩B=B∩A;(2)若A∩B=A,則AB,反之也成立才能得出正確答案.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知實數x,y滿足x2+y2﹣4x+6y+4=0,則 的最小值是(
A.2 +3
B. ﹣3
C. +3
D. ﹣3

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖所示,四棱錐P﹣ABCD的底面ABCD是邊長為1的菱形,∠BCD=60°,E是CD的中點,PA⊥底面ABCD,PA=2. (Ⅰ)證明:平面PBE⊥平面PAB;
(Ⅱ)求二面角B﹣PE﹣D的余弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】若圓C1:(x﹣1)2+(y+3)2=1與圓C2:(x﹣a)2+(y﹣b)2=1外離,過直線l:x﹣y﹣1=0上任意一點P分別做圓C1 , C2的切線,切點分別為M,N,且均保持|PM|=|PN|,則a+b=(
A.﹣2
B.﹣1
C.1
D.2

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某地區(qū)有小學21所,中學14所,大學7所,現采用分層抽樣的方法從這些學校中抽取6所學校對學生進行視力調查.
(1)求應從小學、中學、大學中分別抽取的學校數目;
(2)若從抽取的6所學校中隨機抽取2所學校做進一步數據分析. (ⅰ)列出所有可能的抽取結果;
(ⅱ)求抽取的2所學校均為小學的概率.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知數列{an}滿足(an+1﹣1)(an﹣1)=3(an﹣an+1),a1=2,令bn=
(1)求數列{bn}的通項公式;
(2)求數列{bn3n}的前n項和Sn

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在正方體ABCD﹣A1B1C1D1中,點O為線段BD的中點,設點P在線段CC1上,直線OP與平面A1BD所成的角為α,則sinα的取值范圍是(
A.[ ,1]
B.[ ,1]
C.[ , ]
D.[ ,1]

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某種零件按質量標準分為1,2,3,4,5五個等級,現從批該零件中隨機抽取20個,對其等級進行統(tǒng)計分析,得到頻率分布表如下:

等級

1

2

3

4

5

頻率

0.05

m

0.15

0.35

n


(1)在抽取的20個零件中,等級為5的恰有2個,求m,n的值;
(2)在(1)的條件下,從等級為3和5的所有零件中,任意抽取2個,求抽取的2個零件等級不相同的概率.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數)在處的切線與軸平行.

(1)討論上的單調性;

(2)設 ,證明: .

查看答案和解析>>

同步練習冊答案