(本小題滿分12分)
如圖,已知三棱柱ABC-A1B1C1,側(cè)面BCC1B1丄底面ABC.

(I)若M、N分別是AB,A1C的中點(diǎn),求證:MN//平面BCC1B1
(II)若三棱柱ABC-A1B1C1的各棱長(zhǎng)均為2,側(cè)棱BB1與底面 ABC所成的角為60°.問(wèn)在線段A1C1上是否存在一點(diǎn)P,使得平面B1CP丄平面ACC1A1,若存在,求C1P與PA1的比值,若不存在,說(shuō)明 理由.
(1)利用線面平行的判定定理來(lái)證明即可。
(2)

試題分析:(Ⅰ)證明:連接,因?yàn)锳M=MB,所以MN……………2分

,
所以MN//.…………4分
(Ⅱ)作,
因?yàn)槊?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003503222481.png" style="vertical-align:middle;" />底面
所以

以O(shè)為原點(diǎn),建立如圖所示空間直角坐標(biāo)系,則,B(-1,0,0),C(1,0,0)
.由可求出
…………6分
設(shè)P(x,y,z),
.解得,
,.
設(shè)平面的法向量為
解得………8分
同理可求出平面的法向量.…………10分
由面平面,得,即
解得:………………12分
點(diǎn)評(píng):解決這類問(wèn)題的關(guān)鍵是利用幾何性質(zhì),線面的平行和垂直的判定定理和性質(zhì)定理,來(lái)加以證明,或者利用空間向量的思想,建立直角坐標(biāo)系,求點(diǎn)的坐標(biāo),運(yùn)用向量法來(lái)得到求解,屬于中檔題。
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

在正方體中,M、N、P分別是的中點(diǎn),求證:平面MNP//平面

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖所示,在直三棱柱ABC-A1B1C1中, AC⊥BC.

(1) 求證:平面AB1C1⊥平面AC1;
(2) 若AB1⊥A1C,求線段AC與AA1長(zhǎng)度之比;
(3) 若D是棱CC1的中點(diǎn),問(wèn)在棱AB上是否存在一點(diǎn)E,使DE∥平面AB1C1?若存在,試確定點(diǎn)E的位置;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知、是兩條不同的直線,、是兩個(gè)不同的平面,則下列命題中正確的是
A.若,且,則
B.若,且,則
C.若,且,則
D.若,且,則

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本題滿分14分)
如圖,已知平面QBC與直線PA均垂直于所在平面,且PA=AB=AC.

(Ⅰ)求證:PA∥平面QBC;
(Ⅱ)若,求二面角Q-PB-A的余弦值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿分13分)
如圖,在直三棱柱ABC-A1B1C1中,AC⊥BC,AC=CC1,M為AB的中點(diǎn)。

(Ⅰ)求證:BC1∥平面MA1C;
(Ⅱ)求證:AC1⊥平面A1BC。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

正四棱錐(底面為正方形,頂點(diǎn)在底面上的射影是底面的中心)的底面邊長(zhǎng)為2,高為2,為邊的中點(diǎn),動(dòng)點(diǎn)在表面上運(yùn)動(dòng),并且總保持,則動(dòng)點(diǎn)的軌跡的周長(zhǎng)為(   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖,在正方體中,、分別是、的中點(diǎn),則異面直線所成角的大小是__________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知直線m,n與平面α,β,給出下列三個(gè)命題:
①若m∥α,n∥α,則m∥n;
②若m∥α,n⊥α,則n⊥m;
③若m⊥α,m∥β,則α⊥β.
其中真命題的個(gè)數(shù)是______個(gè)

查看答案和解析>>

同步練習(xí)冊(cè)答案