已知圓C以(3,-1)為圓心,5為半徑,過點S(0,4)作直線l與圓C交于不同兩點A,B.
(Ⅰ)若AB=8,求直線l的方程;
(Ⅱ)當(dāng)直線l的斜率為-2時,過直線l上一點P,作圓C的切線PT(T為切點)使PS=PT,求點P的坐標(biāo);
(Ⅲ)設(shè)AB的中點為N,試在平面上找一點M,使MN的長為定值.
【答案】
分析:(Ⅰ)當(dāng)斜率不存在時,x=0符合條件; 當(dāng)斜率存在時,設(shè)出直線的方程,再由圓心距的平方與弦長一半的平方等于半徑的平方求得圓心距,最后由點到直線的距離公式求得l的方程.
(Ⅱ)當(dāng)l斜率為-2時,直線l方程為y=-2x+4,有x
2+(y-4)
2=(x-3)
2+(y+1)
2-25,從而得到點P的坐標(biāo).
(Ⅲ)由直角三角形斜邊上的中線等于斜邊一半可得.
解答:解:(Ⅰ)圓心C坐標(biāo)(3,-1),半徑r=5,
由條件可知:圓心C到直線l的距離為3.(3分)
當(dāng)斜率不存在時,x=0符合條件; (4分)
當(dāng)直線l斜率存在時,設(shè)其為k,
則
,
則直線l的方程為8x+15y-60=0.
綜上,直線l方程是8x+15y-60=0或x=0;(6分)
(Ⅱ)知直線l方程為y=-2x+4,設(shè)點P(a,4-2a),
則由PC
2-r
2=PS
2得:a
2+4a
2=(a-3)
2+(5-2a)
2-25,
,
所求點P為
;(10分)
(Ⅲ)根據(jù)直角三角形斜邊上的中線等于斜邊一半有:
定點M的坐標(biāo)為
.(16分)
點評:本題主要考查直線與圓的方程的應(yīng)用,主要涉及了垂徑定理,切線的性質(zhì)及直角三角形的性質(zhì).當(dāng)直線與圓相交時,常常過圓心作弦的垂線,根據(jù)弦長的一半,圓的半徑及弦心距構(gòu)造直角三角形,利用勾股定理來解決問題.