設(shè)a為實(shí)數(shù),函數(shù)f(x)=x3+ax2+(a-3)x的導(dǎo)函數(shù)為,且是偶函數(shù), 則曲線:y=f(x)在點(diǎn)(2,f(2))處的切線方程為               .  

 

【答案】

9x—y—16 = 0  

【解析】

試題分析:,因?yàn)?img src="http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/2014041004310296986832/SYS201404100431284855867160_DA.files/image002.png">是偶函數(shù),所以,解得a=0,所以

切線的斜率k==9,f(2)=23-3×2=2,所求切線方程為y-2=9(x-2),即9x—y—16 = 0.

考點(diǎn):1.函數(shù)的導(dǎo)數(shù);2.函數(shù)的奇偶性;3.導(dǎo)數(shù)的幾何意義.

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)a為實(shí)數(shù),f(x)=
33x+1
+a

(1)證明:f(x)為R上的減函數(shù).
(2)若f(x)為奇函數(shù),求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:黃岡重點(diǎn)作業(yè)·高三數(shù)學(xué)(下) 題型:044

設(shè)a為實(shí)數(shù),f(x)=a-(x∈R).

(1)證明對(duì)于任意的實(shí)數(shù)a,f(x)在R上是增函數(shù);

(2)試確定a的值,使f(x)為奇函數(shù);

(3)當(dāng)f(x)是奇函數(shù)時(shí),對(duì)于給定的正實(shí)數(shù)k,解不等式:f-1(x)>log2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年重慶市高三上學(xué)期第四次測(cè)試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:解答題

設(shè)a為實(shí)數(shù), 函數(shù)f(x)=x3-x2-x+a.

(1)求f(x)的極值;

(2)若曲線y=f(x)與x軸僅有一個(gè)交點(diǎn), 求a的取值范圍.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010年河北省高二第二學(xué)期期末考試數(shù)學(xué)(文)試卷 題型:解答題

(本小題滿分12分)

設(shè)a為實(shí)數(shù),函數(shù)

(Ⅰ)求fx的極值;

(Ⅱ)當(dāng)在什么范圍內(nèi)取值時(shí),曲線y= f(x)與x軸僅有一個(gè)交點(diǎn)。

 

查看答案和解析>>

同步練習(xí)冊(cè)答案