4.設(shè)橢圓C1的離心率為,焦點(diǎn)在x軸上且長(zhǎng)軸長(zhǎng)為26,若曲線(xiàn)C2上的點(diǎn)到橢圓C1的兩個(gè)焦點(diǎn)的距離的差的絕對(duì)值等于8,則曲線(xiàn)C2的標(biāo)準(zhǔn)方程為( )
A.-=1
B.-=1
C.-=1
D.-=1
【答案】分析:在橢圓C1中,由題設(shè)條件能夠得到,曲線(xiàn)C2是以F1(-5,0),F(xiàn)2(5,0),為焦點(diǎn),實(shí)軸長(zhǎng)為8的雙曲線(xiàn),由此可求出曲線(xiàn)C2的標(biāo)準(zhǔn)方程.
解答:解:在橢圓C1中,由,得
橢圓C1的焦點(diǎn)為F1(-5,0),F(xiàn)2(5,0),
曲線(xiàn)C2是以F1、F2為焦點(diǎn),實(shí)軸長(zhǎng)為8的雙曲線(xiàn),
故C2的標(biāo)準(zhǔn)方程為:-=1,
故選A.
點(diǎn)評(píng):本題考查圓錐曲線(xiàn)的性質(zhì)和應(yīng)用,解題時(shí)要注意公式的靈活運(yùn)用,注意區(qū)分橢圓和雙曲線(xiàn)的性質(zhì).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

4.設(shè)橢圓C1的離心率為
5
13
,焦點(diǎn)在x軸上且長(zhǎng)軸長(zhǎng)為26,若曲線(xiàn)C2上的點(diǎn)到橢圓C1的兩個(gè)焦點(diǎn)的距離的差的絕對(duì)值等于8,則曲線(xiàn)C2的標(biāo)準(zhǔn)方程為( 。
A、
x2
42
-
y2
32
=1
B、
x2
132
-
y2
52
=1
C、
x2
32
-
y2
42
=1
D、
x2
132
-
y2
122
=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)橢圓C1的離心率為
513
,焦點(diǎn)在x軸上且長(zhǎng)軸長(zhǎng)為26.若曲線(xiàn)C2上的點(diǎn)到橢圓C1的兩個(gè)焦點(diǎn)的距離的差的絕對(duì)值等于8,則曲線(xiàn)C2的標(biāo)準(zhǔn)方程為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)橢圓C1的離心率為
7
15
,焦點(diǎn)在x軸上且長(zhǎng)軸長(zhǎng)為30.若曲線(xiàn)C2上的點(diǎn)到橢圓C1的兩個(gè)焦點(diǎn)的距離的差的絕對(duì)值等于10,則曲線(xiàn)C2的標(biāo)準(zhǔn)方程為( 。
A、
x2
24
-
y2
25
=1
B、
x2
25
-
y2
24
=1
C、
x2
15
-
y2
7
=1
D、
x2
25
+
y2
24
=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)橢圓C1的離心率為
513
,焦點(diǎn)在x軸上且長(zhǎng)軸長(zhǎng)為26.若曲線(xiàn)C2上的點(diǎn)到橢圓C1的兩個(gè)焦點(diǎn)的距離的差的絕對(duì)值等于8,求曲線(xiàn)C2的標(biāo)準(zhǔn)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)橢圓C1的離心率為
5
13
,焦點(diǎn)在x軸上且長(zhǎng)軸長(zhǎng)為26,若曲線(xiàn)C2上的點(diǎn)到C1的兩個(gè)焦點(diǎn)的距離的差的絕對(duì)值為8,則曲線(xiàn)C2的標(biāo)準(zhǔn)方程為( 。
A、
x2
16
-
y2
9
=1
B、
x2
169
-
y2
25
=1
C、
x2
9
-
y2
16
=1
D、
x2
169
-
y2
144
=1

查看答案和解析>>

同步練習(xí)冊(cè)答案