若sinα•
sin2α
+cosα
cos2α
=-1,則角α的取值范圍
 
考點:三角函數(shù)的化簡求值
專題:三角函數(shù)的求值
分析:利用平方關系式化簡已知條件,然后判斷角的范圍即可.
解答: 解:sinα•
sin2α
+cosα
cos2α
=-1,
可得sinα•|sinα|+cosα|cosα|=-1,
所以
sinα<0
cosα<0
,則α是第三象限角.
即2kπ+π<α<2kπ+
2
,k∈Z.
故答案為:2kπ+π<α<2kπ+
2
,k∈Z.
點評:本題考查三角函數(shù)化簡求值,角的范圍的求法,考查計算能力.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

三棱柱ABC-A1B1C1中,側棱與底面垂直,∠ABC=90°,AB=BC=BB1,M是A1B1的中點,N是AC1與A1C的交點.
(1)求證:MN∥平面BCC1B1;
(2)求證:MN⊥平面ABC1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

平面上三個力F1,F(xiàn)2,F(xiàn)3作用一點O,|F1|=1N,|F2|=
6
+
2
2
N,|F3|=(
3
+1)N,若使這三個力作用于點O處于平衡狀態(tài),則三個力之間的夾角分別為多少?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若命題p:“存在x>1,使得x2+(m-3)x+3-m<0”為假命題,則m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知正項等比數(shù)列{an}的公比為q,其前n項積為Tn,并滿足a1>1,
a9a10-1
a9a11-1
<0
,則以下結論錯誤的是(  )
A、0<q<1
B、Tn的最大值是T10
C、a9a10>1
D、使Tn>1的最大自然數(shù)n為18

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

cos2
π
8
+
tan15°
1-tan215°
=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知π<β<2π且tanβ=-2,求sinβ-cosβ的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知f(x)=(1+x)lnx,g(x)=a(1-x)
(1)是否存在實數(shù)a,使g(x)是f(x)在x=1處的切線?
(2)若函數(shù)y=f(x)+g(x)是增函數(shù),求實數(shù)a的范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

從拋物線x2=4y上一點P(第一象限內)引x軸的垂線,垂足為M,設拋物線的焦點為F,若|PF|=5,則直線PM、x軸與拋物線圍成的圖形面積是
 

查看答案和解析>>

同步練習冊答案