已知點F(-c,0)(c>0)是雙曲線的左焦點,過F且平行于雙曲線漸近線的直線與圓x2+y2=c2交于點P,且點P在拋物線y2=4cx上,則該雙曲線的離心率是( )
A.
B.
C.
D.
【答案】分析:利用拋物線的性質、雙曲線的漸近線、直線平行的性質、圓的性質、相似三角形的性質即可得出.
解答:解:如圖,設拋物線y2=4cx的準線為l,作PQ⊥l于Q,
雙曲線的右焦點為F',由題意可知FF'為圓x2+y2=c2的直徑,
∴PF'⊥PF,且,|FF'|=2c,
設|PF'|=x,|PF|=y,則,解得b=2a,
所以4a2=c2-a2,即c2=5a2,所以,即e=
故選B.
點評:數(shù)列掌握拋物線的性質、雙曲線的漸近線、直線平行的性質、圓的性質是解題的關鍵.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知點F(-c,0)(c>0)是雙曲線
x2
a2
-
y2
b2
=1
的左焦點,過F且平行于雙曲線漸近線的直線與圓x2+y2=c2交于點P,且點P在拋物線y2=4cx上,則該雙曲線的離心率是( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,已知點F(1,0),直線l:x=-1,P為平面上的動點,過P作直線l的垂線,垂足為點Q,若
QP
QF
=
FP
FQ

(1)求動點P的軌跡C的方程;
(2)過點M(-1,0)作直線m交軌跡C于A,B兩點.
(Ⅰ)記直線FA,F(xiàn)B的斜率分別為k1,k2,求k1+k2的值;
(Ⅱ)若線段AB上點R滿足
|MA|
|MB|
=
|RA|
|RB|
,求證:RF⊥MF.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2006•嘉定區(qū)二模)如圖,已知點F(1,0),點M在x軸上,點N在y軸上,且
NM
NF
=0,點R滿足
NM
+
NR
=
0

(1)求動點R的軌跡C的方程;
(2)過B(4,0)作直線l交軌跡C于P、Q兩點,求
OP
OQ
的值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知點F(-c,0)(c>0)是雙曲線
x2
a2
-
y2
b2
=1
的左焦點,過F且平行于雙曲線漸近線的直線與圓x2+y2=c2交于點P,且點P在拋物線y2=4cx上,則該雙曲線的離心率是(  )
A.
3+
5
2
B.
5
C.
5
-1
2
D.
1+
5
2

查看答案和解析>>

同步練習冊答案