(2013•?诙#┮阎猠是自然對數(shù)的底數(shù),函數(shù)f(x)=ex+x-2的零點為a,函數(shù)g(x)=lnx+x-2的零點為b,則下列不等式中成立的是( 。
分析:根據(jù)函數(shù)的零點的判定定理,可得0<a<1<b<2,再由函數(shù)f(x)=ex+x-2在(0,+∞)上是增函數(shù),
可得結(jié)論.
解答:解:∵函數(shù)f(x)=ex+x-2的零點為a,f(0)=-1<0,f(1)=e-1>0,∴0<a<1.
∵函數(shù)g(x)=lnx+x-2的零點為b,g(1)=-1<0,g(2)=ln2>0,∴1<b<2.
綜上可得,0<a<1<b<2.
再由函數(shù)f(x)=ex+x-2在(0,+∞)上是增函數(shù),可得 f(a)<f(1)<f(b),
故選A.
點評:本題主要考查函數(shù)的零點的判定定理,函數(shù)的單調(diào)性的應(yīng)用,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2013•海口二模)復(fù)數(shù)z=
1+2i
1-i
的共軛復(fù)數(shù)在復(fù)平面上對應(yīng)的點在( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•?诙#┮阎螹={-1,0,1},N={0,1,2},則如圖所示韋恩圖中的陰影部分所表示的集合為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•?诙#┰O(shè)偶函數(shù)f(x)=Asin(ωx+?)(A>0,ω>0,0<?<π)的部分圖象如圖所示,△KLM為等腰直角三角形,∠KML=90°,KL=1,則f(
1
6
)
的值為(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•?诙#┰O(shè)O,A,B,M為平面上四點,
OM
=
λOA
+(1-λ)
OB
,λ∈(0,1),則( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•?诙#┤鬭>0,b>0,a+b=2,則下列不等式:①a2+b2≥2;②
1
a
+
1
b
≥2
;③ab≤1;④
a
+
b
2
恒成立的是( 。

查看答案和解析>>

同步練習(xí)冊答案