如圖,直徑AB=2,C是圓O上的一點(diǎn),連接BC并延長(zhǎng)至D, 使|CD|=|BC|,若ACOD的交點(diǎn)P,,則       

 

【答案】

2

【解析】

試題分析:由于直徑所對(duì)的圓周角為直角,同時(shí)|CD|=|BC|,延長(zhǎng)CO到與圓相交于點(diǎn)E,則三角形BEC,和三角形BAC全等,同時(shí)要根據(jù),得到BC的長(zhǎng)度為1,同時(shí)得到ABC=,那么對(duì)于CAB=,然后結(jié)合三角形APO,相似于三角形DCP,進(jìn)而得到關(guān)系式AP:PC=OP:PD,然后根據(jù)已知中的向量的數(shù)量積公式得到的值為2,故填寫答案為2

考點(diǎn):本試題考查了圓的性質(zhì)運(yùn)用。

點(diǎn)評(píng):對(duì)于幾何求解中直線與圓,以及三角形與圓的性質(zhì)的綜合運(yùn)用,是高考的一個(gè)考向,值得關(guān)注,同時(shí)對(duì)于適當(dāng)?shù)淖鞒鲚o助線是解題的難點(diǎn),需要多加訓(xùn)練,屬于中檔題。

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

21、 選修1:幾何證明選講
如圖,設(shè)AB為⊙O的任一條不與直線l垂直的直徑,P是⊙O與l的公共點(diǎn),AC⊥l,BD⊥l,垂足分別為C,D,且PC=PD,求證:
(1)l是⊙O的切線;
(2)PB平分∠ABD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•河南模擬)如圖,焦距為2的橢圓E的兩個(gè)頂點(diǎn)分別為A和B,且
AB
n
=(
2
,-1)
共線.
(Ⅰ)求橢圓E的標(biāo)準(zhǔn)方程;
(Ⅱ)若直線y=kx+m與橢圓E有兩個(gè)不同的交點(diǎn)P和Q,且原點(diǎn)O總在以PQ為直徑的圓的內(nèi)部,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(考生注意:請(qǐng)?jiān)谙铝腥}中任選一題作答,如果多做,則按所做的第一題評(píng)閱記分)
A.(不等式選做題)不等式|
x+1
x-1
|≥1
的解集是
(-∞,0]
(-∞,0]

B.(幾何證明選做題) 如圖,以AB=4為直徑的圓與△ABC的兩邊分別交于E,F(xiàn)兩點(diǎn),∠ACB=60°,則EF=
2
2

C.(坐標(biāo)系與參數(shù)方程選做題) 在極坐標(biāo)中,已知點(diǎn)P為方程ρ(cosθ+sinθ)=1所表示的曲線上一動(dòng)點(diǎn),Q(2,
π
3
),則|PQ|的最小值為
6
2
6
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•深圳一模)如圖甲,⊙O的直徑AB=2,圓上兩點(diǎn)C、D 在直徑AB 的兩側(cè),使∠CAB=
π
4
,∠DAB=
π
3
.沿直徑AB 折起,使兩個(gè)半圓所在的平面互相垂直(如圖乙),F(xiàn) 為BC的中點(diǎn),E 為AO 的中點(diǎn).根據(jù)圖乙解答下列各題:
(1)求三棱錐C-BOD 的體積;
(2)求證:CB⊥DE;
(3)在BD弧上是否存在一點(diǎn) G,使得FG∥平面 ACD?若存在,試確定點(diǎn)G 的位置;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案