已知數(shù)列{an}滿足:an=logn+1(n+2)(n∈N+),定義使a1•a2•a3…ak為整數(shù)的數(shù)k(k∈N+)叫做幸運(yùn)數(shù),則k∈[1,2011]內(nèi)所有的幸運(yùn)數(shù)的和為_(kāi)_______.

2026
分析:先利用換底公式與疊乘法把a(bǔ)1•a2•a3…ak化為log2(k+2);然后根據(jù)a1•a2•a3…ak為整數(shù),可得k=2n-2;最后由等比數(shù)列前n項(xiàng)和公式解決問(wèn)題.
解答:an=logn+1(n+2)=(n∈N+),
∴a1•a2•a3…ak==log2(k+2)
又∵a1•a2•a3…ak為整數(shù)
∴k+2必須是2的n次冪(n∈N+),即k=2n-2.
∴k∈[1,2011]內(nèi)所有的幸運(yùn)數(shù)的和
M=(22-2)+(23-2)+(24-2)+…+(210-2)
=-2×9=2026 (211-2>2011)
故答案為2026.
點(diǎn)評(píng):本題在理解新定義的基礎(chǔ)上,考查換底公式、疊乘法及等比數(shù)列前n項(xiàng)和公式,其綜合性、技巧性是比較強(qiáng)的.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}滿足:a1=1且an+1=
3+4an
12-4an
, n∈N*

(1)若數(shù)列{bn}滿足:bn=
1
an-
1
2
(n∈N*)
,試證明數(shù)列bn-1是等比數(shù)列;
(2)求數(shù)列{anbn}的前n項(xiàng)和Sn;
(3)數(shù)列{an-bn}是否存在最大項(xiàng),如果存在求出,若不存在說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}滿足
1
2
a1+
1
22
a2+
1
23
a3+…+
1
2n
an=2n+1
則{an}的通項(xiàng)公式
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}滿足:a1=
3
2
,且an=
3nan-1
2an-1+n-1
(n≥2,n∈N*).
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)證明:對(duì)于一切正整數(shù)n,不等式a1•a2•…an<2•n!

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}滿足an+1=|an-1|(n∈N*
(1)若a1=
54
,求an
(2)若a1=a∈(k,k+1),(k∈N*),求{an}的前3k項(xiàng)的和S3k(用k,a表示)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•北京模擬)已知數(shù)列{an}滿足an+1=an+2,且a1=1,那么它的通項(xiàng)公式an等于
2n-1
2n-1

查看答案和解析>>

同步練習(xí)冊(cè)答案