設橢圓
x2
a2
+
y2
b2
=1(a>b>0)的離心率為
3
3
,且它的一個焦點坐標是(1,0),則此橢圓的方程為( 。
A、
x2
6
+
y2
5
=1
B、
x2
7
+
y2
5
=1
C、
x2
3
+
y2
2
=1
D、
x2
4
+
y2
3
=1
考點:橢圓的簡單性質(zhì)
專題:圓錐曲線的定義、性質(zhì)與方程
分析:跟進橢圓的幾何性質(zhì),求出c=1,a=
3
,b=
2
,求解方程即可.
解答: 解:∵橢圓
x2
a2
+
y2
b2
=1(a>b>0)的離心率為
3
3
,且它的一個焦點坐標是(1,0),
c
a
=
3
3
,c=1,a=
3
,b=
2
,
∴橢圓的方程為
x2
3
+
y2
2
=1,
故選:C
點評:本題考查了橢圓的幾何性質(zhì),屬于容易題,計算題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

平面向量
a
,
b
的夾角為60°,
a
=(2,0),|
b
|=1,則|
a
+2
b
|=( 。
A、2
3
B、
3
C、
3
2
D、2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)的圖象如圖所示,f′(x)是f(x)的導函數(shù),則下列數(shù)值排序正確的是(  )
A、0<f′(2)<f′(3)<f(3)-f(2)
B、0<f′(3)<f(3)-f(2)<f′(2)
C、0<f′(3)<f′(2)<f(3)-f(2)
D、0<f(3)-f(2)<f′(2)<f′(3)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

一個四面體的頂點在空間直角坐系O-xyz中的坐標分別是(1,0,0),(0,0,1),(0,1,0),(1,1,1),畫該四面體三視圖中的正視圖時,以zOy平面為投影面,則得到的正視圖可為( 。
A、
B、
C、
D、

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

求下列函數(shù)的導數(shù)
(1)y=x4-
5
x2
;
(2)y=xtanx;
(3)y=(x+1)(x+2)(x+3)
(4)y=lgx-2x

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

A
2
8
=( 。
A、10B、30C、56D、120

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=x2+bx+c,且f(1)=0.
(1)若函數(shù)f(x)是偶函數(shù),求f(x)的解析式;
(2)在(1)的條件下,求函數(shù)f(x)在[-1,3]上的最大、最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知實數(shù)x,y滿足約束條件
x-y+5≥0
x+2y-1≥0
x≤3
 
,則z=x-y的最大值是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在△ABC中,A(0,3),C(1,-2),若點B與點A關于直線y=-x對稱,
(Ⅰ)試求直線BC的方程;
(Ⅱ)試求線段BC的垂直平分線方程.

查看答案和解析>>

同步練習冊答案