精英家教網 > 高中數學 > 題目詳情
已知
a
=(sinx,
3
cosx),
b
=(cosx,cosx),f(x)=
a
b

(1)若
a
b
,求x的取值集合;(2)求函數f(x)的周期及增區(qū)間.
分析:(1)根據兩向量垂直時其數量積為0,利用平面向量的數量積的運算法則得到一個關系式,利用二倍角的正弦、余弦函數公式化簡,再利用兩角和與差的正弦函數公式及特殊角的三角函數值化為一個角的正弦函數等于-
3
2
,利用特殊角的三角函數值即可求出x的范圍,進而得到x的取值集合;
(2)由(1)求出的f(x)的解析式,找出ω的值,利用周期公式即可求出f(x)的最小正周期,由正弦函數的單調遞增區(qū)間列出關于x的不等式,求出不等式的解集即為f(x)的遞增區(qū)間.
解答:解:(1)∵
a
b
,∴
a
b
=0,
a
b
=sinxcosx+
3
cos2x=
1
2
sin2x+
3
2
cos2x+
3
2
=sin(2x+
π
3
)+
3
2

∴sin(2x+
π
3
)+
3
2
=0,即sin(2x+
π
3
)=-
3
2
,
∴2x+
π
3
=2kπ-
3
或2x+
π
3
=2kπ-
π
3
(k∈Z),
解得:x=kπ-
π
2
或x=kπ-
π
3
(k∈Z),
∴x的取值集合為{x|x=kπ-
π
2
或x=kπ-
π
3
(k∈Z)};
(2)∵f(x)=
a
b
=sin(2x+
π
3
)+
3
2
,∴f(x)的周期T=
2
=π,
∵y=sinx的增區(qū)間為[2kπ-
π
2
,2kπ+
π
2
](k∈Z),
由2kπ-
π
2
≤2x+
π
3
≤2kπ+
π
2
,解得:kπ-
12
≤x≤kπ+
π
12

∴f(x)的增區(qū)間為[kπ-
12
,kπ+
π
12
](k∈Z).
點評:此題考查了平面向量數量積的運算及利用數量積判斷兩向量的垂直關系,三角函數的周期性及其求法,正弦函數的單調性及三角函數的恒等變形,熟練掌握公式及法則是解本題的關鍵.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知
a
=(sinx,1)
,
b
=(2cosx,2+cos2x)
,函數f(x)=
a
b

(Ⅰ)求f(x)的最小正周期;
(Ⅱ)求函數f(x)的最大值及取得最大值的自變量x的集合.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知
a
=(sinx,cosx)
,
b
=(
3
cosx,cosx)
,設函數f(x)=
a
b
(x∈R)
(1)求f(x)的最小正周期及單調遞增區(qū)間;
(2)當x∈[-
π
6
,
12
]
時,求f(x)的值域.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知
a
=(sinx,-cosx),
b
=(cosx,
3
cosx)
,函數f(x)=
a
b
+
3
2

(1)求f(x)的最小正周期,并求其圖象對稱中心的坐標;
(2)當0≤x≤
π
2
時,求函數f(x)的值域.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2012•蕪湖二模)已知
a
=(sinx,1)
,
b
=(cosx,-
1
2
)
,函數f(x)=
a
•(
a
-
b
)
,那么下列四個命題中正確命題的序號是
②③④
②③④

①f(x)是周期函數,其最小正周期為2π.
②當x=
π
8
時,f(x)有最小值2-
2
2

③[-
7
8
π,-
3
8
π]是函數f(x)的一個單調遞增區(qū)間;
④點(-
π
8
,2)是函數f(x)的一個對稱中心.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知
a
=(sinx,cosx),
b
=(
3
cosx,cosx)
,設函數f(x)=
a
b
(x∈R)
(1)求f(x)的最小正周期及單調遞增區(qū)間;
(2)當x∈[-
π
6
,
12
]
時,求f(x)的最值并指出此時相應的x的值.

查看答案和解析>>

同步練習冊答案