分析 (1)由an+1=2an+1得an+1+1=2(an+1),可得數(shù)列{an+1}是以2為首項,公比為2的等比數(shù)列.
(2)①由已知可得$\frac{_{n+1}}{{a}_{n+1}}=\frac{_{n}}{{a}_{n}}+\frac{1}{{a}_{n}}$,即可得bn+1an-(bn+1)an+1得值; ②由①知$\frac{_{n}+1}{_{n+1}}=\frac{{a}_{n}}{{a}_{n+1}},(n≥2)$,b1=a1=1,b2=a2=3.
$\frac{_{1}+1}{_{1}}•\frac{_{2}+1}{_{2}}•\frac{_{3}+1}{_{3}}…\frac{_{n}+1}{_{n}}$=$\frac{1}{_{1}}•\frac{_{1}+1}{_{2}}•\frac{_{2}+1}{_{3}}…\frac{_{n}+1}{_{n+1}}•_{n+1}$=$\frac{1}{_{1}}•\frac{_{1}+1}{_{2}}•\frac{{a}_{2}}{{a}_{3}}•\frac{{a}_{3}}{{a}_{4}}…\frac{{a}_{n}}{{a}_{n+1}}•_{n+1}$=2$\frac{_{n+1}}{{a}_{n+1}}=2(\frac{1}{{a}_{1}}+\frac{1}{{a}_{2}}+…+\frac{1}{{a}_{n}})$ 即可證得$(1+{b_1})(1+{b_2})•…•(1+{b_n})<\frac{10}{3}{b_1}•{b_2}•…•{b_n}(n∈{N^*})$.
解答 解:(1)由an+1=2an+1得an+1+1=2(an+1).
⇒$\frac{{a}_{n+1}+1}{{a}_{n}+1}=2$,
∴數(shù)列{an+1}是以2為首項,公比為2的等比數(shù)列.
(2)由(1)得數(shù)列{an+1}是以2為首項,公比為2的等比數(shù)列.
∴an+1=2•2n-1=2n,⇒${a}_{n}={2}^{n}-1$
①,$\frac{b_n}{a_n}=\frac{1}{a_1}+\frac{1}{a_2}+…+\frac{1}{{{a_{n-1}}}}(n≥2,n∈{N^*})$…①.
$\frac{_{n+1}}{{a}_{n+1}}\frac{1}{{a}_{1}}+\frac{1}{{a}_{2}}+..+\frac{1}{{a}_{n-1}}+\frac{1}{{a}_{n}}$…③
②-①得$\frac{_{n+1}}{{a}_{n+1}}=\frac{_{n}}{{a}_{n}}+\frac{1}{{a}_{n}}$⇒bn+1an-(bn+1)an+1=0(n≥2)
當n=1時,b1=a1=1,b2=a2=3,∴b2a1-a2(b1+1)=-3.
②由①知$\frac{_{n}+1}{_{n+1}}=\frac{{a}_{n}}{{a}_{n+1}},(n≥2)$,b1=a1=1,b2=a2=3.
∴$(\frac{1}{_{1}}+1)(\frac{1}{_{2}+1})…(\frac{1}{_{n}}+1)$=$\frac{_{1}+1}{_{1}}•\frac{_{2}+1}{_{2}}•\frac{_{3}+1}{_{3}}…\frac{_{n}+1}{_{n}}$=$\frac{1}{_{1}}•\frac{_{1}+1}{_{2}}•\frac{_{2}+1}{_{3}}…\frac{_{n}+1}{_{n+1}}•_{n+1}$
=$\frac{1}{_{1}}•\frac{_{1}+1}{_{2}}•\frac{{a}_{2}}{{a}_{3}}•\frac{{a}_{3}}{{a}_{4}}…\frac{{a}_{n}}{{a}_{n+1}}•_{n+1}$=2$\frac{_{n+1}}{{a}_{n+1}}=2(\frac{1}{{a}_{1}}+\frac{1}{{a}_{2}}+…+\frac{1}{{a}_{n}})$
∵k≥2時,$\frac{1}{{2}^{k}-1}<2(\frac{1}{{2}^{k}-1}-\frac{1}{{2}^{k+1}-1})$.
∴$\frac{1}{{a}_{1}}+\frac{1}{{a}_{2}}+…+\frac{1}{{a}_{n}}<1+\frac{1}{2}+2$[($\frac{1}{{2}^{2}-1}-\frac{1}{{2}^{3}-1}$)+…+($\frac{1}{{2}^{n}-1}-\frac{1}{{2}^{n+1}-1}$)]
=1+2($\frac{1}{3}-\frac{1}{{2}^{n+1}-1}$)$<\frac{5}{3}$
∴$(\frac{1}{_{1}}+1)(\frac{1}{_{2}+1})…(\frac{1}{_{n}}+1)$═2$\frac{_{n+1}}{{a}_{n+1}}=2(\frac{1}{{a}_{1}}+\frac{1}{{a}_{2}}+…+\frac{1}{{a}_{n}})$$<\frac{10}{3}$
∴$(1+{b_1})(1+{b_2})•…•(1+{b_n})<\frac{10}{3}{b_1}•{b_2}•…•{b_n}(n∈{N^*})$.
點評 本題考查了利用數(shù)列遞推式求通項的方法,考查了數(shù)列與不等式,考查了計算能力,屬于中檔題.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $-\frac{1}{2}$ | B. | $\frac{1}{2}$ | C. | $-\frac{{\sqrt{3}}}{2}$ | D. | $\frac{{\sqrt{3}}}{2}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
優(yōu)秀 | 非優(yōu)秀 | 合計 | |
甲車間 | 10 | 50 | 60 |
乙車間 | 20 | 30 | 50 |
合計 | 30 | 80 | 110 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{5}{28}$ | B. | $\frac{1}{7}$ | C. | $\frac{15}{56}$ | D. | $\frac{2}{7}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 2k+1 | B. | 2(2k+1) | C. | $\frac{2k+1}{k+1}$ | D. | $\frac{2k+3}{k+1}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com