設(shè)F是拋物線Gx2=4y的焦點(diǎn).

(Ⅰ)過點(diǎn)P(0,-4)作拋物線G的切線,求切線方程:

(Ⅱ)設(shè)A、B為勢物線G上異于原點(diǎn)的兩點(diǎn),且滿足,延長AFBF分別交拋物線G于點(diǎn)C,D,求四邊形ABCD面積的最小值.

答案:
解析:

  ()設(shè)切點(diǎn).由,知拋物線在點(diǎn)處的切線斜率為,故所求切線方程為

  即

  因?yàn)辄c(diǎn)在切線上.

  所以,,

  所求切線方程為

  ()設(shè)

  由題意知,直線的斜率存在,由對稱性,不妨設(shè)

  因直線過焦點(diǎn),所以直線的方程為

  點(diǎn)的坐標(biāo)滿足方程組

  得

  由根與系數(shù)的關(guān)系知

  

  因?yàn)?IMG style="vertical-align:middle" SRC="http://thumb.zyjl.cn/pic7/pages/60A2/0659/0018/87d5f889b98fa4d546448b7e76226ae4/C/Image211.gif" width=68 HEIGHT=18>,所以的斜率為,從而的方程為

  同理可求得

  

  當(dāng)時,等號成立.所以,四邊形面積的最小值為


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)F是拋物線G:x2=4y的焦點(diǎn).
(Ⅰ)過點(diǎn)P(0,-4)作拋物線G的切線,求切線方程;
(Ⅱ)設(shè)A,B為拋物線G上異于原點(diǎn)的兩點(diǎn),且滿足
FA
FB
=0
,延長AF,BF分別交拋物線G于點(diǎn)C,D,求四邊形ABCD面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)F是拋物線G:x2=4y的焦點(diǎn).
(Ⅰ)過點(diǎn)P(0,-4)作拋物線G的切線,求切線方程;
(Ⅱ)過拋物線G的焦點(diǎn)F,作兩條互相垂直的直線,分別交拋物線于A,C,B,D點(diǎn),求四邊形ABCD面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)F是拋物線G:x2=4y的焦點(diǎn),點(diǎn)P是F關(guān)于原點(diǎn)的對稱點(diǎn).
(Ⅰ)過點(diǎn)P作拋物線G的切線,若切點(diǎn)在第一象限,求切線方程;
(Ⅱ)試探究(Ⅰ)中的拋物線G的切線與動圓x2+(y-m)2=5,m∈R的位置關(guān)系.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:安徽省高考真題 題型:解答題

設(shè)F是拋物線G:x2=4y的焦點(diǎn)。
(1)過點(diǎn)P(0,-4)作拋物線G的切線,求切線方程;
(2)設(shè)A,B為拋物線G上異于原點(diǎn)的兩點(diǎn),且滿足,延長AF,BF分別交拋物線G于點(diǎn)C,D,求四邊形ABCD面積的最小值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年安徽省六安一中高三(下)第六次月考數(shù)學(xué)試卷(文科)(解析版) 題型:解答題

設(shè)F是拋物線G:x2=4y的焦點(diǎn).
(I)過點(diǎn)P(0,-4)作拋物線G的切線,求切線方程;
(II)過拋物線G的焦點(diǎn)F,作兩條互相垂直的直線,分別交拋物線于A,C,B,D點(diǎn),求四邊形ABCD面積的最小值.

查看答案和解析>>

同步練習(xí)冊答案