8.正方體ABCD-A1B1C1D1的棱長為a.E為棱AA1的中點,
(1)求三棱錐E-BCD1與三棱錐A-CDB1的體積比為.
(2)求三棱錐B-A1C1D的體積.

分析 (1)取DD1的中點F,連接EF,可得EF∥BC,即EF∥面BCD1,${V}_{E-BC{D}_{1}}={V}_{F-BC{D}_{1}}$=$\frac{1}{2}{V}_{D-BC{D}_{1}}$=$\frac{1}{2}{V}_{{D}_{1}BCD}=\frac{1}{2}×\frac{1}{3}×\frac{1}{2}×a×a×a=\frac{{a}^{3}}{12}$,V${\;}_{A-CD{B}_{1}}={V}_{{B}_{1}-ADC}=\frac{1}{3}×\frac{1}{2}×a×a×a$=$\frac{{a}^{3}}{6}$,即可求解;
(2)三棱錐B-A1C1D是棱長為$\sqrt{2}a$的正四面體,利用正四面體的性質(zhì),計算體積即可.

解答 解:(1)取DD1的中點F,連接EF,可得EF∥BC,即EF∥面BCD1
∴${V}_{E-BC{D}_{1}}={V}_{F-BC{D}_{1}}$=$\frac{1}{2}{V}_{D-BC{D}_{1}}$=$\frac{1}{2}{V}_{{D}_{1}BCD}=\frac{1}{2}×\frac{1}{3}×\frac{1}{2}×a×a×a=\frac{{a}^{3}}{12}$,
V${\;}_{A-CD{B}_{1}}={V}_{{B}_{1}-ADC}=\frac{1}{3}×\frac{1}{2}×a×a×a$=$\frac{{a}^{3}}{6}$,
∴三棱錐E-BCD1與三棱錐A-CDB1的體積比為1:2;

(2)三棱錐B-A1C1D是棱長為$\sqrt{2}a$的正四面體,如圖:
設(shè)B在面A1C1D的投影為O,則O為等邊三角形的中心,
∴${A}_{1}O=\frac{2}{3}×\frac{\sqrt{3}}{2}×\sqrt{2}a=\frac{\sqrt{6}}{3}a$,∴$BO=\sqrt{(\sqrt{2}a)^{2}-(\frac{\sqrt{6}a}{3})^{2}}=\frac{2\sqrt{3}a}{3}$,
三棱錐B-A1C1D的體積V=$\frac{1}{3}×{s}_{{A}_{1}{C}_{1}D}×BO$=$\frac{1}{3}×\frac{\sqrt{3}}{4}×(\sqrt{2}a)^{2}×\frac{2\sqrt{3}}{3}a=\frac{{a}^{3}}{3}$.

點評 本題考查了等體積法求體積,考查了計算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.若復(fù)數(shù)Z的共軛復(fù)數(shù)為$\overline Z$,且滿足:$\frac{\overline Z}{1+i}$=1+i,其中i為虛數(shù)單位,則|Z|=( 。
A.1B.2C.$\sqrt{2}$D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.在△ABC中,角A、B、C所對邊的長分別為a、b、c,若b=1,A=2B,則$\frac{a}{cosB}$的值等于(  )
A.3B.$\frac{1}{2}$C.1D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知命題p:在x∈[1,2]時,不等式x2+ax-2>0恒成立;命題q:函數(shù)$f(x)={log_{\frac{1}{3}}}({x^2}-2ax+3a)$是區(qū)間[1,+∞)上的減函數(shù).若命題“p或q”是真命題,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.求函數(shù)的定義域
(1)y=log5(1+x)        
(2)$y=\sqrt{x-5}$;      
(3)$y={2^{\frac{1}{x}}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.在平面直角坐標(biāo)系xOy中,已知斜率為-1的直線l與橢圓$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{^{2}}$=1(a>b>0)相交于A,B兩點,且AB的中點為M(2,1)
(1)求橢圓的離心率;
(2)設(shè)橢圓的右焦點為F,且AF•BF=5,求橢圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知拋物線C:y2=2px(p>0)的焦點為F,直線y=4與y軸的交點為P,與拋物線C的交點為Q,且|QF|=2|PQ|,過F的直線l與拋物線C相交于A,B兩點.
(1)求C的方程;
(2)設(shè)AB的垂直平分線l'與C相交于M,N兩點,試判斷A,M,B,N四點是否在同一個圓上?若在,求出l的方程;若不在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.公共汽車上有4位乘客,其中任意兩人都不在同一車站下車,汽車沿途停靠6個車站,那這4位乘客不同的下車方式共有360種.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.已知復(fù)數(shù)z滿足|z|=1,又u=z2-i+1,則|u|的取值范圍是[$\sqrt{2}$-1,$\sqrt{2}$+1].

查看答案和解析>>

同步練習(xí)冊答案