設(shè)函數(shù).
(1)求的單調(diào)區(qū)間;
(2)設(shè)函數(shù),若當(dāng)時(shí),恒成立,求的取值范圍.
(1) 當(dāng)時(shí),,所以在上是增函數(shù)當(dāng)時(shí),在上是增函數(shù),在上是減函數(shù);(2)
【解析】
試題分析:(1)根據(jù)導(dǎo)數(shù)公式求出,對(duì)于含有的參數(shù)要進(jìn)行討論,或兩種情況;(2)設(shè),將恒成立,轉(zhuǎn)化成恒成立,所以求,將分解因式,討論的范圍,確定的正負(fù),討論的單調(diào)性,確定恒成立的條件,確定的范圍,此題考察了導(dǎo)數(shù)的應(yīng)用,屬于中等偏上的系統(tǒng),兩問(wèn)都考察到了分類討論的范圍,這是我們?cè)谧鲱}時(shí)考慮問(wèn)題不全面,容易丟分的環(huán)節(jié).
試題解析:(1)解:因?yàn)?/span>,其中. 所以, 2分
當(dāng)時(shí),,所以在上是增函數(shù) 4分
當(dāng)時(shí),令,得
所以在上是增函數(shù),在上是減函數(shù). 6分
(2)解:令,則,
根據(jù)題意,當(dāng)時(shí),恒成立. 8分
所以
(1)當(dāng)時(shí),時(shí),恒成立.
所以在上是增函數(shù),且,所以不符題意 10分
(2)當(dāng)時(shí),時(shí),恒成立.
所以在上是增函數(shù),且,所以不符題意 12分
(3)當(dāng)時(shí),時(shí),恒有,故在上是減函數(shù),
于是“對(duì)任意都成立”的充要條件是,
即,解得,故.
綜上所述,的取值范圍是. 15分
考點(diǎn):1.利用導(dǎo)數(shù)求函數(shù)的單調(diào)區(qū)間;2.利用導(dǎo)數(shù)解決恒成立的問(wèn)題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
)設(shè)函數(shù),
(1)求的周期以及單調(diào)增區(qū)間; (2)若,求sin2x的值;
(3)在△ABC中,a,b,c分別是角A,B,C的對(duì)邊, 求b,c的長(zhǎng)。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
設(shè)函數(shù),
(1)求的定義域;
(2)是否存在最大值或最小值?如果存在,請(qǐng)把它求出來(lái);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
(本小題滿分13分)設(shè)函數(shù).(1)求的最小正周期(2)若函數(shù)與的圖像關(guān)于直線對(duì)稱,求當(dāng)時(shí)的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年江西省高三上學(xué)期第三次月考數(shù)學(xué)文卷 題型:解答題
(14分)設(shè)函數(shù)。
(1)求的單調(diào)區(qū)間;
(2)若,不等式恒成立,求實(shí)數(shù)m的取值范圍;
(3)若方程在區(qū)間[0, 2] 恰有兩個(gè)不等實(shí)根,求a的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2014屆廣東省汕頭市高一第一學(xué)期期末考試數(shù)學(xué)試卷 題型:解答題
設(shè)函數(shù),(1)求的振幅,周期和初相;(2)求的最大值并求出此時(shí)值組成的集合。(3)求的單調(diào)減區(qū)間.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com