某種開關(guān)在電路中閉合的概率為p,現(xiàn)將4只這種開關(guān)并聯(lián)在某電路中(如圖所示),若該電路為通路的概率為
65
81
,則p=(  )
A、
1
2
B、
1
3
C、
2
3
D、
3
4
考點:互斥事件的概率加法公式,相互獨立事件的概率乘法公式
專題:概率與統(tǒng)計
分析:只有當(dāng)并聯(lián)的4只開關(guān)同時不閉合時該電路不通路,從而得到1-
65
81
=(1-p)4,由此能求出p.
解答: 解:∵該電路為通路的概率為
65
81
,
∴該電路為不通路的概率為1-
65
81
,
只有當(dāng)并聯(lián)的4只開關(guān)同時不閉合時該電路不通路,
∴1-
65
81
=(1-p)4,
解得p=
1
3

故選:B.
點評:本題考查概率的求法,是基礎(chǔ)題,解題時要認真審題,注意對立事件概率計算公式的合理運用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知曲線C的參數(shù)方程為
x=2cosα
y=3sinα
(α為參數(shù)),在極坐標系中(極坐標系與直角坐標系xOy取相同的長度單位,且以原點O為極點,以x軸正半軸為極軸),直線l的極坐標方程為p(3cosθ-2sinθ)=6
(I)求直線l的直角坐標方程;
(Ⅱ)求曲線C上動點P到直線l距離的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)α、β、γ均為銳角,cosα2+cosβ2+cosγ2+2cosαcosβcosγ=1,求證:α+β+γ=π.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,已知a=5,b=4,∠C=60°,則C邊長為( 。
A、
21
B、
61
C、
41
D、5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,已知sinA:sinB:sinC=9:6:5,求cosA.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=
2x+a,x>2
x+a2,x≤2
,若f(x)的值域為R,是實數(shù)a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若直線AB,BC的傾斜角分別為α,β,且α=β,則直線AB,BC的位置關(guān)系是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1
(a>b>0)的離心率為
6
3
,且經(jīng)過點(
3
2
1
2
).則該橢圓C的標準方程是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

y=
3-ax
3x+5
的值域為y≠1,求a.

查看答案和解析>>

同步練習(xí)冊答案