某工廠生產甲、乙兩種產品,每種產品都是經過第一和第二道工序加工而成,兩道工序的加工結果相互獨立,每道工序的加工結果均有A、B兩個等級.對每種產品,兩道工序的加工結果都為A級時,產品為一等品,其余均為二等品.

(1)已知甲、乙兩種產品每一道工序的加工結果為A級的概率如表一所示,分別求生產出的甲、乙產品為一等品的概率P、P.

表一

(2)已知一件產品的利潤如表二所示,用ξ、η分別表示一件甲、乙產品的利潤,在(1)的條件下,求ξ、η的分布列及Eξ、Eη.

表二

(3)已知生產一件產品需用的工人數(shù)和資金額如表三所示.該工廠有工人40名,可用資金60萬元.設x、y分別表示生產甲、乙產品的數(shù)量,在(2)的條件下,x、y為何值時,z=xEξ+yEη最大?最大值是多少?(解答時需給出圖示)

表三

解:(1)P=0.8×0.85=0.68,P=0.75×0.8=0.6.

    (2)隨機變量ξ、η的分布列是

ξ

5

2.5

P

0.68

0.32

 

η

2.5

1.5

P

0.6

0.4

    Eξ=5×0.68+2.5×0.32=4.2,

    Eη=2.5×0.6+1.5×0.4=2.1.

    (3)由題設知

    目標函數(shù)為z=xEξ+yEη=4.2x+2.1y.作出可行域(如圖):

    作直線l:4.2x+2.1y=0,

    將l向右上方平移至l1位置時,直線經過可行域上的點M且與原點距離最大,此時z=4.2x+2.1y取最大值.

    解方程組

    得

    故x=4,y=4時,z取最大值,z的最大值為25.2.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

某工廠生產甲、乙兩種產品,甲產品的一等品率為80%,二等品率為20%;乙產品的一等品率為90%,二等品率為10%.生產1件甲產品,若是一等品則獲得利潤4萬元,若是二等品則虧損1萬元;生產1件乙產品,若是一等品則獲得利潤6萬元,若是二等品則虧損2萬元.設生產各種產品相互獨立.
(1)記X(單位:萬元)為生產1件甲產品和1件乙產品可獲得的總利潤,求X的分布列;
(2)求生產4件甲產品所獲得的利潤不少于10萬元的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

18、某工廠生產甲、乙兩種產品,每種產品都是經過第一道和第二道工序加工而成,兩道工序的加工結果相互獨立,每道工序的加工結果均有A、B兩個等級,對每種產品,兩道工序的加工結果都為A級時,產品為一等品,其余均為二等品
(1)已知甲、乙兩種產品每一道工序的加工結果為A級的概率如表一所示,分別求生產的甲、乙產品為一等品的概率P、P;
(2)已知一件產品的利潤如表二所示,用ξ、η分別表示一件甲、乙產品的利潤,在(1)的條件下,分別求甲、乙兩種產品利潤的分布列及數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某工廠生產甲、乙兩種產品.已知生產一噸甲產品、一噸乙產品所需要的煤、電以及產值如表所示;
用煤(噸) 用電(千瓦) 產值(萬元)
生產一噸甲種產品 7 2 8
生產一噸乙種產品 3 5 11
又知道國家每天分配給該廠的煤和電力有限制,每天供煤至多56噸,供電至多45千瓦.問該廠如何安排生產,才能使該廠日產值最大?最大的產值是多少?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某工廠生產甲、乙兩種產品,這兩種產品每千克的產值分別為600元和400元,已知每生產1千克甲產品需要A種原料4千克,B種原料2千克;每生產1千克乙產品需要A種原料2千克,B種原料3千克.但該廠現(xiàn)有A種原料100千克,B種原料120千克.問如何安排生產可以取得最大產值,并求出最大產值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某工廠生產甲、乙兩種產品,已知生產每噸甲產品所需電力4千瓦時、勞力6個,獲得利潤5百元;生產每噸乙產品所需電力5千瓦時、勞力4個,獲得利潤4百元;每天資源限額(最大供應量)分別為電力202千瓦時、勞動力240個.
問:每天生產甲、乙兩種產品各多少噸,獲得利潤總額最大?最大利潤是多少?

查看答案和解析>>

同步練習冊答案