【題目】某氣象站統(tǒng)計了4月份甲、乙兩地的天氣溫度(單位),統(tǒng)計數(shù)據(jù)的莖葉圖如圖所示,

1)根據(jù)所給莖葉圖利用平均值和方差的知識分析甲,乙兩地氣溫的穩(wěn)定性;

2)氣象主管部門要從甲、乙兩地各隨機抽取一天的天氣溫度,若甲、乙兩地的溫度之和大于或等于,則被稱為甲、乙兩地往來溫度適宜天氣,求甲、乙兩地往來溫度適宜天氣的概率.

【答案】1)見解析 2

【解析】

1)分別計算平均值和方差比較大小得到答案.

2)列出所有可能性共有種可能,滿足條件的共有種,計算得到答案.

1)根據(jù)題意可知:,

,

,

,,

∴甲、乙兩地的整體氣溫水平相當,乙地的氣溫水平更穩(wěn)定一些.

2)氣象主管部門要從甲、乙兩地連續(xù)10天中各隨機抽取一天的天氣溫度,

設隨機抽取的甲、乙兩地天氣溫度分別為,

則所有為:,,,,,,,,

,,,,,,,,

,,,,共計25個,

的基本事件有,,,,

,,,,,共計14個,

故滿足的基本事件共有14(個),

于是甲、乙兩地往來溫度適宜天氣的概率

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知拋物線的焦點為,的準線,軸,軸,、交拋物線、兩點,交、兩點,已知的面積是2倍,則中點軸的距離的最小值為(

A.B.1C.D.2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】函數(shù)是定義在上的偶函數(shù),周期是4,當時,.則方程的根的個數(shù)為( )

A.3B.4C.5D.6

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下列說法正確的個數(shù)為(

為真為真的充分不必要條件;

②若數(shù)據(jù)的平均數(shù)為1,則的平均數(shù)為2;

③在區(qū)間上隨機取一個數(shù),則事件發(fā)生的概率為

④已知隨機變量服從正態(tài)分布,且,則.

A.4B.3C.2D.1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某高校進行自主招生測試,報考學生有500人,其中男生300人,女生200人,為了研究學生的成績是否與性別有關,現(xiàn)采用分層抽樣的方法,從中抽取了100名學生,先統(tǒng)計了他們測試的分數(shù),然后按性別分為男、女兩組,再將兩組學生的分數(shù)分成4組:,,分別加以統(tǒng)計,得到如圖所示的頻率分布直方圖.

(Ⅰ)根據(jù)頻率分布直方圖可以估計女生測試成績的平均值為103.5,請你估計男生測試成績的平均值,由此推斷男、女生測試成績的平均水平的高低;

(Ⅱ)若規(guī)定分數(shù)不小于110分的學生為優(yōu)秀生,請你根據(jù)已知條件完成列聯(lián)表,并判斷是否有的把握認為優(yōu)秀生與性別有關?

優(yōu)秀生

非優(yōu)秀生

合計

男生

女生

合計

參考公式:,.

參考數(shù)據(jù):

P

0.100

0.050

0.010

0.001

2.706

3.841

6.635

10.828

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】從拋物線上任意一點Px軸作垂線段,垂足為Q,點M是線段上的一點,且滿足

(1)求點M的軌跡C的方程;

(2)設直線與軌跡c交于兩點,TC上異于的任意一點,直線,分別與直線交于兩點,以為直徑的圓是否過x軸上的定點?若過定點,求出符合條件的定點坐標;若不過定點,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】三國時代吳國數(shù)學家趙爽所注《周髀算經》中給出了勾股定理的絕妙證明.下面是趙爽的弦圖及注文,弦圖是一個以勾股形之弦為邊的正方形,其面積稱為弦實.圖中包含四個全等的勾股形及一個小正方形,分別涂成紅(朱)色及黃色,其面積稱為朱實、黃實,利用,化簡,得.設勾股形中勾股比為,若向弦圖內隨機拋擲顆圖釘(大小忽略不計),則落在黃色圖形內的圖釘數(shù)大約為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

1)求函數(shù)的單調區(qū)間;

2)若上存在一點,使得成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,曲線的參數(shù)方程為,其中為參數(shù),.在以坐標原點為極點,軸的正半軸為極軸的極坐標系中,點的極坐標為,直線的極坐標方程為.

(1)求直線的直角坐標方程與曲線的普通方程;

(2)若是曲線上的動點,為線段的中點.求點到直線的距離的最大值.

查看答案和解析>>

同步練習冊答案