精英家教網 > 高中數學 > 題目詳情
閱讀下列一段材料,然后解答問題:對于任意實數x,符號[x]表示“不超過x的最大整數”,在數軸上,當x是整數,[x]就是x,當x不是整數時,[x]是點x左側的第一個整數點,這個函數叫做“取整函數”,也叫高斯(Gauss)函數.如[-2]=-2,[-1.5]=-2,[2.5]=2.求的值為( )
A.0
B.-2
C.-1
D.1
【答案】分析:由已知可求[]=[]=-2,[]=-1,[log21]=0,[log22]=[log23]=1,[log24]=2,代入可求
解答:解:由題意可得:
=-2+(-2)+(-1)+0+1+1+2
=-1
故選C
點評:本題主要考查了對數的運算性質的應用,解題的關鍵是準確理解題目中的定義,屬于基礎試題
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:閱讀理解

閱讀下列一段材料,然后解答問題:對于任意實數x,符號[x]表示“不超過x的最大整數”,在數軸上,當x是整數,[x]就是x,當x不是整數時,[x]是點x左側的第一個整數點,這個函數叫做“取整函數”,也叫高斯(Gauss)函數;如[-2]=-2,[-1.5]=-2,[2.5]=2;則[log2
1
4
]+[log2
1
3
]+[log2
1
2
]+[log21]+[log22]+[log23]+[log24]
的值為
 

查看答案和解析>>

科目:高中數學 來源: 題型:閱讀理解

閱讀下列一段材料,然后解答問題:對于任意實數x,符號[x]表示“不超過x的最大整數”,在數軸上,當x是整數,[x]就是x,當x不是整數時,[x]是點x左側的第一個整數點,這個函數叫做“取整函數”,也叫高斯(Gauss)函數.如[-2]=-2,[-1.5]=-2,[2.5]=2.求[log2
1
4
]+[log2
1
3
]+[log2
1
2
]+[log21]+[log22]+[log23]+[log24]
的值為( 。

查看答案和解析>>

科目:高中數學 來源: 題型:閱讀理解

閱讀下列一段材料,然后解答問題:對于任意實數x,符號[x]表示“不超過x的最大整數”,在數軸上,當x是整數,[x]就是x,當x不是整數時,[x]是點x左側的第一個整數點,這個函數叫做“取整函數”,也叫高斯(Gauss)函數.如[-2]=-2,[-1.5]=-2,[2.5]=2.則[log2
1
4
]+[log2
1
3
]+[log21]+[log23]+[log24]
的值為( 。

查看答案和解析>>

科目:高中數學 來源: 題型:閱讀理解

閱讀下列一段材料,然后解答問題:對于任意實數x,符號[x]表示“不超過x的最大整數”,在數軸上,當x是整數,[x]就是x,當x不是整數時,[x]是點x左側的笫一個整數點,這個函數叫做“取整函數”也叫高斯(Gauss)函數.如[-2]=-2,[-1.5]=-2,[2.5]=2.則[1og2
1
4
]+[log2
1
3
]+[1og2
1
2
]+[1og21]+[log22]+[log23]+[log24]的值為
-1
-1

查看答案和解析>>

科目:高中數學 來源: 題型:閱讀理解

閱讀下列一段材料,然后解答問題:對于任意實數x,符號[x]表示“不超過x的最大整數”,在數軸上,當x是整數,[x]就是x,當x不是整數時,[x]是點x左側的第一個整數點,這個函數叫做“取整函數”,也叫高斯(Gauss)函數;如[-2]=-2,[-1.5]=-2,[2.5]=2;則[log2
1
4
]+[log2
1
3
]+[log2
1
2
]+[log21]+[log22]+[log23]的值為
-3
-3

查看答案和解析>>

同步練習冊答案