【題目】某工廠家具車間做A,B型兩類桌子,每張桌子需木工和漆工兩道工序完成.已知木工做一張A,B型桌子分別需要1小時(shí)和2小時(shí),漆工油漆一張A,B型桌子分別需要3小時(shí)和1小時(shí);又知木工和漆工每天工作分別不得超過(guò)8小時(shí)和9小時(shí),設(shè)該廠每天做A,B型桌子分別為x張和y張.
(1)試列出x,y滿足的關(guān)系式,并畫出相應(yīng)的平面區(qū)域;
(2)若工廠做一張A,B型桌子分別獲得利潤(rùn)為2千元和3千元,那么怎樣安排A,B型桌子生產(chǎn)的張數(shù),可使得所得利潤(rùn)最大,最大利潤(rùn)是多少?
【答案】(1)畫圖詳見(jiàn)解析(2)每天應(yīng)生產(chǎn)A型桌子2張,B型桌子3張才能獲得最大利潤(rùn),為13千元
【解析】
(1)根據(jù)已知條件得到關(guān)系式,畫出可行域.
(2)目標(biāo)函數(shù)為,根據(jù)(1)中可行域平移得到答案.
解:設(shè)每天生產(chǎn)A型桌子x張,B型桌子y張,
則,目標(biāo)函數(shù)為,
作出可行域如圖,
把直線向右上方平移至的位置時(shí),直線經(jīng)過(guò)可行域上的點(diǎn)M,且與原點(diǎn)距離最大,此時(shí)取最大值.
解方程,得M的坐標(biāo).
答:每天應(yīng)生產(chǎn)A型桌子2張,B型桌子3張才能獲得最大利潤(rùn),為13千元.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐中,平面 平面,四邊形為正方形,△為等邊三角形,是中點(diǎn),平面與棱交于點(diǎn).
(Ⅰ)求證:;
(Ⅱ)求證:平面;
(III)記四棱錐的體積為,四棱錐的體積為,直接寫出的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)求的最大值;
(2)當(dāng)時(shí),函數(shù)有最小值. 記的最小值為,求函數(shù)的值域.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知某超市為顧客提供四種結(jié)賬方式:現(xiàn)金、支付寶、微信、銀聯(lián)卡.若顧客甲沒(méi)有銀聯(lián)卡,顧客乙只帶了現(xiàn)金,顧客丙、丁用哪種方式結(jié)賬都可以,這四名顧客購(gòu)物后,恰好用了其中的三種結(jié)賬方式,那么他們結(jié)賬方式的可能情況有( )種
A. 19B. 7C. 26D. 12
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知關(guān)于x的一元二次方程x2+ax+b2=0.
(1)若a是從0,1,2,3四個(gè)數(shù)中任取的一個(gè)數(shù),b是從0,1,2三個(gè)數(shù)中任取的一個(gè)數(shù),求上述方程有實(shí)根的概率;
(2)若a是從區(qū)間[0,3]上任取的一個(gè)實(shí)數(shù),b是從區(qū)間[0,2]上任取的一個(gè)實(shí)數(shù),求上述方程有實(shí)根的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某項(xiàng)選拔共有四輪考核,每輪設(shè)有一個(gè)問(wèn)題,能正確回答問(wèn)題者進(jìn)入下一輪考核,否則即被淘汰,.已知某選手能正確回答第一、二、三、四輪的問(wèn)題的概率分別為,,,,且各輪問(wèn)題能否正確回答互不影響.
(1)求該選手進(jìn)入第四輪才被淘汰的概率;
(2)求該選手至多進(jìn)入第三輪考核的概率;
(3)求該選手回答過(guò)四個(gè)問(wèn)題的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知雙曲線,雙曲線的左、右焦點(diǎn)分別為F1,F2,M是雙曲線C2的一條漸近線上的點(diǎn),且OM⊥MF2,O為坐標(biāo)原點(diǎn),若,且雙曲線C1,C2的離心率相同,則雙曲線C2的實(shí)軸長(zhǎng)是 ( )
A. 32 B. 4 C. 8 D. 16
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直角坐標(biāo)系中,曲線的參數(shù)方程為 (為參數(shù))。在以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸的極坐標(biāo)系中,曲線。
(1)寫出曲線,的普通方程;
(2)過(guò)曲線的左焦點(diǎn)且傾斜角為的直線交曲線于兩點(diǎn),求。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com