函數(shù)f(x)=x-2lnx在(0,2]上的值域?yàn)?u> .
【答案】
分析:由題意得f′(x)=1-
=
分析得到函數(shù)f(x)=x-2lnx在(0,2]上是減函數(shù),所以當(dāng)x=2時(shí)函數(shù)f(x)有最小值2-2ln2,當(dāng)x趨向于0時(shí)函數(shù)值趨向于+∞.
解答:解:由題意得f′(x)=1-
=
因?yàn)閤∈(0,2]
所以f′(x)<0
所以函數(shù)f(x)=x-2lnx在(0,2]上是減函數(shù).
所以當(dāng)x=2時(shí)函數(shù)f(x)有最小值2-2ln2,當(dāng)x趨向于0時(shí)函數(shù)值趨向于+∞.
所以函數(shù)f(x)=x-2lnx在(0,2]上的值域?yàn)閇2-2ln2,+∞).
故答案為:[2-2ln2,+∞).
點(diǎn)評(píng):解決此類問題關(guān)鍵是正確求函數(shù)的導(dǎo)數(shù)并且分析導(dǎo)數(shù)的符號(hào)判斷出原函數(shù)的單調(diào)性,進(jìn)而求出函數(shù)的最值得出函數(shù)的值域.