考點(diǎn):等差數(shù)列的性質(zhì),數(shù)列遞推式
專題:等差數(shù)列與等比數(shù)列
分析:(1)由S
n+1=4a
n+k可得S
n+2=4a
n+1+k,兩式相減可得b
n+1=2b
n,由等比數(shù)列的定義可得;
(2)由(1)知b
n=(k+1)2
n-1,可得c
n+1-c
n=
=1,由等差數(shù)列的通項(xiàng)公式可得c
n和k值,進(jìn)而可得a
n=2
n(n-
),代入S
n=4a
n-1+k,計(jì)算可得.
解答:
解:(1)∵S
n+1=4a
n+k,∴S
n+2=4a
n+1+k,
兩式相減可得a
n+2=S
n+2-S
n+1=4a
n+1-4a
n,
變形可得a
n+2-2a
n+1=2(a
n+1-2a
n),
∴b
n+1=2b
n,
又∵S
2=a
1+a
2=4a
1+k,∴a
2=k+3,
∴b
1=a
2-2a
1=k+1≠0
∴{b
n}是k+1為首項(xiàng)2為公比的等比數(shù)列
(2)由(1)知b
n=(k+1)2
n-1,
∴a
n+1-2a
n=(k+1)2
n-1,
∴
-
=
,
∴c
n+1-c
n=
=1,
解得k=3,又c
1=
=
,
∴c
n=
=
+n-1=n-
,∴a
n=2
n(n-
)
∴S
n=4a
n-1+k=4×=2
n-1(n-1-
)+3
=2
n+1(n-
)+3
點(diǎn)評(píng):本題考查等差數(shù)列和數(shù)列的遞推公式,涉及等差和等比的判定,屬中檔題.