已知a,b,c為互不相等的三個正數(shù),函數(shù)f(x)可能滿足如下性質:
①f(x-a)為奇函數(shù);②f(x+a)為奇函數(shù);③f(x-b)為偶函數(shù);④f(x+b)為偶函數(shù).
類比函數(shù)y=sinx的對稱中心、對稱軸與周期的關系,某同學得出了如下結論:
(1)若滿足①②,則f(x)的一個周期為4a;(2)若滿足①③,則f(x)的一個周期為4|a-b|;(3)若滿足③④,則f(x)的一個周期為3|a-b|.
其中正確結論的個數(shù)是( )
A.0
B.1
C.2
D.3
【答案】分析:根據(jù)函數(shù)奇偶性的定義,我們可得當f(x-a)為奇函數(shù)時,f(-x-a)=-f(x-a);當f(x+a)為奇函數(shù)時,f(-x+a)=-f(x+a);當f(x-b)為偶函數(shù)時,f(-x-b)=f(x-b);當f(x+b)為偶函數(shù)時,f(-x+b)=f(x+b).進而逐一判斷3個結論是否正確,可得答案.
解答:解:若f(x-a)為奇函數(shù),且f(x+a)為奇函數(shù),
∴f(x+4a)=f(x+3a+a)=-f(-x-3a+a)=-f(-x-2a)=-f(-x-a-a)=f(x+a-a)=f(x)
故f(x)滿足①②時,f(x)的一個周期為4a;
若f(x-a)為奇函數(shù),f(x-b)為偶函數(shù),不妨令a>b
則f(x+4a-4b)=f(x+4a-3b-b)=f(-x-4a+3b)=f(-x-3a+3b-a)=-f(x+3a-3b)=f(x+2a-2b)=-f(x+a-b)=f(x)
故f(x)滿足①③時,則f(x)的一個周期為4|a-b|;
若f(x-b)為偶函數(shù),f(x+b)為偶函數(shù),則f(x)的一個周期為4b,3|a-b|不一定是函數(shù)的周期
故選C
點評:本題考查的知識點是函數(shù)的奇偶性和函數(shù)的周期性,其中正確理解函數(shù)奇偶性與周期性的定義是解答的關鍵.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知a,b,c為互不相等的三個正數(shù),函數(shù)f(x)可能滿足如下性質:
①f(x-a)為奇函數(shù);②f(x+a)為奇函數(shù);③f(x-b)為偶函數(shù);④f(x+b)為偶函數(shù).
類比函數(shù)y=sinx的對稱中心、對稱軸與周期的關系,某同學得出了如下結論:
(1)若滿足①②,則f(x)的一個周期為4a;(2)若滿足①③,則f(x)的一個周期為4|a-b|;(3)若滿足③④,則f(x)的一個周期為3|a-b|.
其中正確結論的個數(shù)是( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:單選題

已知a,b,c為互不相等的三個正數(shù),函數(shù)f(x)可能滿足如下性質:
①f(x-a)為奇函數(shù);②f(x+a)為奇函數(shù);③f(x-b)為偶函數(shù);④f(x+b)為偶函數(shù).
類比函數(shù)y=sinx的對稱中心、對稱軸與周期的關系,某同學得出了如下結論:
(1)若滿足①②,則f(x)的一個周期為4a;(2)若滿足①③,則f(x)的一個周期為4|a-b|;(3)若滿足③④,則f(x)的一個周期為3|a-b|.
其中正確結論的個數(shù)是


  1. A.
    0
  2. B.
    1
  3. C.
    2
  4. D.
    3

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知a,b,c為互不相等的三個正數(shù),函數(shù)f(x)可能滿足如下性質:
①f(x-a)為奇函數(shù);②f(x+a)為奇函數(shù);③f(x-b)為偶函數(shù);④f(x+b)為偶函數(shù).
類比函數(shù)y=sinx的對稱中心、對稱軸與周期的關系,某同學得出了如下結論:
(1)若滿足①②,則f(x)的一個周期為4a;(2)若滿足①③,則f(x)的一個周期為4|a-b|;(3)若滿足③④,則f(x)的一個周期為3|a-b|.
其中正確結論的個數(shù)是(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知a、b、c為互不相等的正數(shù)且abc=1,求證:

++++.

查看答案和解析>>

同步練習冊答案