如圖,⊙O的直徑AB的延長線與弦CD的延長線相交于點P,E為⊙O上一點,
AE
=
AC
,DE交AB于點F.若AB=4,BP=3,則PF=
 
考點:與圓有關(guān)的比例線段
專題:直線與圓
分析:本題考查的知識點是與圓有關(guān)的比例線段,由于點F在直徑AB上,不能直接應(yīng)用切割線定理或相交弦定理,考慮構(gòu)造相似形求解.連接OC后,易證明△POC∽△PDF,然后根據(jù)相似三角形的性質(zhì),即可得到答案.
解答: 解:連接OC,如圖所示,
∵∠AOC的度數(shù)=弧AC的度數(shù),
∠EDC的度數(shù)=
1
2
弧EC的度數(shù)=弧AC的度數(shù)
∴∠AOC=∠EDC
∴∠POC=∠PDF
∴△POC∽△PDF
∴PD:PO=PF:PC,
即PF=
PC•PD
PO
=
PB•PA
PO
=
3×(3+4)
3+2
=
21
5

故答案為:
21
5
點評:本題是考查同學(xué)們推理能力、邏輯思維能力的好資料,題目以證明題為主,特別是一些定理的證明和用多個定理證明一個問題的題目,我們注意熟練掌握:1.射影定理的內(nèi)容及其證明; 2.圓周角與弦切角定理的內(nèi)容及其證明;3.圓冪定理的內(nèi)容及其證明;4.圓內(nèi)接四邊形的性質(zhì)與判定.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖E、F、G、H分別是空間四邊形ABCD的邊AB、BC、CD、DA的中點.
(1)求證:四邊形EFGH為平行四邊形.
(2)若AC與BD滿足什么條件時,四邊形EFGH為菱形,試證明你的結(jié)論.
(3)求證:AC∥平面EFGH.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

一個樣本a,3,5,7的平均數(shù)是4,則這個樣本的方差是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示,正方體ABCD-A1B1C1D1中,側(cè)面對角線AB1,BC1上分別有一點E,F(xiàn),且B1E=C1F,則直線EF與平面ABCD的位置關(guān)系是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知三棱柱ABC-A1B1C1底面是邊長為
6
的正三角形,側(cè)棱垂直于底面,且該三棱柱的外接球表面積為12π,則該三棱柱的體積為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在等比數(shù)列{an}中,若a2•a3•a6•a9•a10=243,則
a92
a12
的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

對于函數(shù)f(x),若存在大于零的常數(shù)T和非零常數(shù)S,使得當(dāng)x取定義域中的每一個值時,都有f(x+T)=f(x)+S,那么f(x)稱為“類周期函數(shù)”,T叫做“類周期”.已知g(x)是定義在R上以1為周期的函數(shù),h(x)=g(x)+x在[3,4]上的值域為[-2,5].現(xiàn)有以下結(jié)論:
①h(x)是以1為“類周期“的“類周期函數(shù)“;
②h(x-3)=h(x)+3;
③h(x)在[0,1]上的值域為[-5,2];
④函數(shù)y=h(x)的圖象向右平移1個單位長度,再向上平移1個單位長度后,所得圖象與h(x)重合.
其中正確結(jié)論的序號是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

把106轉(zhuǎn)化為二進制數(shù)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=
sinx-1
6-2sinx-4cosx
(0≤x≤2π)的值域是(  )
A、[-
2
2
,0]
B、[-1,0]
C、[-
2
,0]
D、[-
4
5
,0]

查看答案和解析>>

同步練習(xí)冊答案