【題目】已知圖像上有一最低點(diǎn),若圖像上各點(diǎn)縱坐標(biāo)不變,橫坐標(biāo)縮為原來(lái)的倍,再向左平移個(gè)單位得,又的所有根從小到大依次相差個(gè)單位,則的解析式為__________.
【答案】
【解析】
將函數(shù)整理為;代入可將函數(shù)整理為:;根據(jù)三角函數(shù)平移變換可得:;根據(jù)的所有根從小到大依次相差個(gè)單位可知過(guò)曲線的最高點(diǎn)或最低點(diǎn),或經(jīng)過(guò)所有的對(duì)稱中心;利用周期排除掉過(guò)最高點(diǎn)或最低點(diǎn)的情況,利用過(guò)所有的對(duì)稱中心可求得,進(jìn)而得到解析式.
由題意得:,其中,
是圖象的最低點(diǎn)
橫坐標(biāo)縮為原來(lái)的倍得:
向左移動(dòng)個(gè)單位得:
的所有根從小到大依次相差個(gè)單位可知與的相鄰交點(diǎn)間的距離相等
過(guò)曲線的最高點(diǎn)或最低點(diǎn),或經(jīng)過(guò)所有的對(duì)稱中心
①當(dāng)過(guò)曲線的最高點(diǎn)或最低點(diǎn)時(shí),每?jī)蓚(gè)根之間相差一個(gè)周期,即相差,不合題意;
②當(dāng)過(guò)曲線所有的對(duì)稱中心時(shí),則 ,滿足題意
本題正確結(jié)果:
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)a,b∈R.若直線l:ax+y﹣7=0在矩陣A= 對(duì)應(yīng)的變換作用下,得到的直線為l′:9x+y﹣91=0.求實(shí)數(shù)a,b的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在上海自貿(mào)區(qū)的利好刺激下,公司開(kāi)拓國(guó)際市場(chǎng),基本形成了市場(chǎng)規(guī)模;自2014年1月以來(lái)的第個(gè)月(2014年1月為第一個(gè)月)產(chǎn)品的內(nèi)銷量、出口量和銷售總量(銷售總量=內(nèi)銷量+出口量)分別為、和(單位:萬(wàn)件),依據(jù)銷售統(tǒng)計(jì)數(shù)據(jù)發(fā)現(xiàn)形成如下?tīng)I(yíng)銷趨勢(shì):,(其中,為常數(shù),),已知萬(wàn)件,萬(wàn)件,萬(wàn)件.
(1)求,的值,并寫(xiě)出與滿足的關(guān)系式;
(2)證明:逐月遞增且控制在2萬(wàn)件內(nèi);
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在棱長(zhǎng)為的正方體中,O是AC的中點(diǎn),E是線段D1O上一點(diǎn),且D1E=λEO.
(1)若λ=1,求異面直線DE與CD1所成角的余弦值;
(2)若平面CDE⊥平面CD1O,求λ的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】現(xiàn)有 (n≥2,n∈N*)個(gè)給定的不同的數(shù)隨機(jī)排成一個(gè)下圖所示的三角形數(shù)陣:
設(shè)Mk是第k行中的最大數(shù),其中1≤k≤n,k∈N*.記M1<M2<…<Mn的概率為pn .
(1)求p2的值;
(2)證明:pn> .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】以下莖葉圖記錄了甲,乙兩組各四名同學(xué)單位時(shí)間內(nèi)引體向上的次數(shù),乙組記錄中有一個(gè)數(shù)據(jù)模糊,無(wú)法確認(rèn),在圖中以表示.
(1)如果,求乙組同學(xué)單位時(shí)間內(nèi)引體向上次數(shù)的平均數(shù)和方差;
(2)如果,分別從甲,乙兩組中隨機(jī)選取一名同學(xué),求這兩名同學(xué)單位時(shí)間內(nèi)引體向上次數(shù)和為19的概率.
(注:方差,其中為的平均數(shù)).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐P﹣ABCD中,底面ABCD為正方形,PA⊥底面ABCD,AD=AP,E為棱PD中點(diǎn).
(1)求證:PD⊥平面ABE;
(2)若F為AB中點(diǎn), ,試確定λ的值,使二面角P﹣FM﹣B的余弦值為- .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖是一個(gè)路燈的平面設(shè)計(jì)示意圖,其中曲線段AOB可視為拋物線的一部分,坐標(biāo)原點(diǎn)O為拋物線的頂點(diǎn),拋物線的對(duì)稱軸為y軸,燈桿BC可視為線段,其所在直線與曲線AOB所在的拋物線相切于點(diǎn)B.已知AB=2分米,直線軸,點(diǎn)C到直線AB的距離為8分米.燈桿BC部分的造價(jià)為10元/分米;若頂點(diǎn)O到直線AB的距離為t分米,則曲線段AOB部分的造價(jià)為元. 設(shè)直線BC的傾斜角為,以上兩部分的總造價(jià)為S元.
(1)①求t關(guān)于的函數(shù)關(guān)系式;
②求S關(guān)于的函數(shù)關(guān)系式;
(2)求總造價(jià)S的最小值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com