圓x2+y2+2x-6y-15=0與直線(1+3m)x+(3-2m)y+4m-17=0的交點個數(shù)是
2
2
分析:求出直線系經(jīng)過的定點,判斷點與圓的位置關(guān)系,即可判斷直線與圓交點的個數(shù).
解答:解:圓x2+y2+2x-6y-15=0化為(x+1)2+(y-3)2=52,圓心坐標(biāo)(-1,3),半徑為5.
直線(1+3m)x+(3-2m)y+4m-17=0化為(x+3y-17)+m(3x-2y+4)=0,
直線恒過
x+3y-17=0
3x-2y+4=0
的交點,解方程組可得
x=2
y=5
,交點坐標(biāo)(2,5),
交點與圓心的距離為
(2+1)2+(5-3)2
=
13
<5.
∴(2,5)在圓的內(nèi)部,∴直線與圓恒有兩個交點.
故答案為:2.
點評:本題考查直線系方程與圓的位置關(guān)系,直線與圓的交點的個數(shù)的求法,考查分析問題解決問題的能力.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

圓x2+y2-2x-1=0關(guān)于直線2x-y+3=0對稱的圓的方程是( 。
A、(x+3)2+(y-2)2=
1
2
B、(x-3)2+(y+2)2=
1
2
C、(x+3)2+(y-2)2=2
D、(x-3)2+(y+2)2=2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

當(dāng)圓x2+y2+2x+ky+k2=0的面積最大時,圓心坐標(biāo)是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

過點(2,1)的直線中,被圓x2+y2-2x-4y=0截得的弦長最短的直線方程為
x-y-1=0
x-y-1=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

圓x2+y2-2x+6y+9=0的周長等于( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知圓 x2+y2=4與圓x2+y2-2x+y-5=0相交,則它們的公共弦所在的直線方程是
2x-y+1=0
2x-y+1=0

查看答案和解析>>

同步練習(xí)冊答案