(2012•成都一模)不等式
1
x-1
+
1
2
 > 0
的解集為
{x|x>1或x<-1}
{x|x>1或x<-1}
分析:把不等式左邊通分后,利用同分母分式的加法法則:分母不變只把分子相加計算后,根據(jù)兩數(shù)相乘的取符號法則:同號得正,把不等式化為兩個不等式組,求出兩不等式組的解集的并集,即可得到原不等式的解集.
解答:解:不等式
1
x-1
+
1
2
 > 0
,
通分相加得:
x+1
2(x-1)
>0,即
x+1
x-1
>0,
可化為:
x+1>0
x-1>0
x+1<0
x-1<0
,
解得:x>1或x<-1,
則原不等式的解集為{x|x>1或x<-1}.
故答案為:{x|x>1或x<-1}
點評:此題考查了其他不等式的解法,涉及的知識有:不等式的基本性質(zhì),以及一元一次不等式組的解法,利用了轉化的數(shù)學思想,其轉化的理論依據(jù)為:兩數(shù)相乘同號得正異號得負的取符號法則.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

(2012•成都一模)已知函數(shù)f(x)=x2-2mx+2-m
(1)若不等式f(x)≥-mx+2在R上恒成立,求實數(shù)m的取值范圍
(2)設函數(shù)f(x)在[0,1]上的最小值為g(m),求g(m)的解析式及g(m)=1時實數(shù)m的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•成都一模)若函數(shù)f(x)滿足:在定義域D內(nèi)存在實數(shù)x0,使得f(x0+1)=f(x0)+f(1)成立,則稱函數(shù)f(x)為“1的飽和函數(shù)”.有下列函數(shù):
①f(x)=
1x
;②f(x)=2x
;
③f(x)=lg(x2+2);
④f(x)=cosπx,
其中你認為是“1的飽和函數(shù)”的所有函數(shù)的序號為
②④
②④

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•成都一模)設正方體ABC-A1B1C1D1 的棱長為2,動點E,F(xiàn)在棱A1B1上,動點P、Q分別在棱AD、CD上,若EF=1,A1E=x,DQ=y,DP=z(x,y,z>0),則下列結論中錯誤的是(  )

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•成都一模)已知函數(shù)f(x)=
3
inωxcosωx+1-sin2ωx
的周期為2π,其中ω>0.
(I)求ω的值及函數(shù)f(x)的單調(diào)遞增區(qū)間;
(II)在△ABC中,設內(nèi)角A、B、C所對邊的長分別為a、b,c若a=
3
,c=2,f(A)=
3
2
,求b的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•成都一模)設集合S={1,2,3,4,5,6},定義集合對(A,B):A⊆S,B⊆S,A中含有3個元素,B中至少含有2個元素,且B中最小的元素不小于A中最大的元素.記滿足A∪B=S的集合對(A,B)的總個數(shù)為m,滿足A∩B≠∅的集合對(A,B)的總個數(shù)為n,則
m
n
的值為( �。�

查看答案和解析>>

同步練習冊答案