精英家教網 > 高中數學 > 題目詳情
10.有一道數學難題,在半小時內甲能解決的概率是$\frac{1}{2}$,乙能解決的概率為$\frac{1}{3}$,兩人試圖獨立地在半小時解決,則難題半小時內被解決的概率為$\frac{2}{3}$.

分析 利用對立事件概率計算公式能求出難題半小時內被解決的概率.

解答 解:∵有一道數學難題,在半小時內甲能解決的概率是$\frac{1}{2}$,乙能解決的概率為$\frac{1}{3}$,
兩人試圖獨立地在半小時解決,
難題半小時內被解決的概率:
p=1-[(1-$\frac{1}{2}$)(1-$\frac{1}{3}$)]=$\frac{2}{3}$.
故答案為:$\frac{2}{3}$.

點評 本題考查概率的求法,是基礎題,解題時要認真審題,注意等可能事件概率計算公式的合理運用.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:選擇題

20.已知復數z1=1-2i,z2=2+3i,則$\frac{z_1}{z_2}$在復平面內對應的點在( 。
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

1.在平面直角坐標系中,不等式組$\left\{\begin{array}{l}{y≥0}\\{x-y+a≥0}\\{2x+y-4≤0}\end{array}\right.$(a為常數)表示的平面區(qū)域的面積為3,則z=x+y的最大值為( 。
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

18.如圖,在四棱錐P-ABCD中,PA⊥平面ABCD,AB⊥BC,∠BCA=45°,PA=AD=2,AC=1,DC=$\sqrt{5}$.
(1)證明PC⊥AD;
(2)求二面角A-PC-D的余弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

5.已知全集U=R,A={x|x2+2x≤0},B={x|x>-1},則集合∁U(A∩B)=( 。
A.(-∞,-1]∪(0,+∞)B.(-∞,-1)∪[0,+∞)C.(-1,0]D.[-1,0)

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

15.已知:sinx+siny+sinz=cosx+cosy+cosz=0,求S=tan(x+y+z)+tanxtanytanz的值.

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

2.已知雙曲線$\frac{x^2}{a^2}$-$\frac{y^2}{b^2}$=1(a>0,b>0)的左頂點與拋物線y2=2px(p>0)的焦點的距離為4,且雙曲線的一條漸近線與拋物線的準線的交點坐標為(-2,-1),則雙曲線的方程為$\frac{x^2}{4}-{y^2}=1$.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

19.經過兩條直線l1:2x-3y+10=0與l2:3x+4y-2=0的交點,且垂直于直線3x-2y+5=0的直線方程為(  )
A.3x+2y+2=0B.3x-2y+10=0C.2x+3y-2=0D.2x-3y+10=0

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

20.已知平面向量$\overrightarrow{p}$=(mlnx+ln2e2,x),$\overrightarrow{q}$=(1,$\frac{x}{2}$-m-1),函數f(x)=$\overrightarrow{p}$•$\overrightarrow{q}$(其中e=2.71828…是自然對數的底數).
(1)當m=-1時,求函數f(x)在點P(2,f(2))處的切線方程;
(2)討論函數f(x)的極值情況.

查看答案和解析>>

同步練習冊答案