已知?jiǎng)訄AP過(guò)點(diǎn)且與直線相切.
(Ⅰ) 求動(dòng)圓圓心P的軌跡E的方程;
(Ⅱ) 設(shè)直線與軌跡E交于點(diǎn)A、BM是線段AB的中點(diǎn),過(guò)M軸的垂線交軌跡EN
① 證明:軌跡E點(diǎn)N處的切線AB平行;
② 是否存在實(shí)數(shù),使?若存在,求的值;若不存在,說(shuō)明理由.
,故存在實(shí)數(shù)

解:(Ⅰ)依題意:E的軌跡是以為焦點(diǎn),為準(zhǔn)線的拋物線方程
所以E的軌跡方程為:
(Ⅱ)設(shè)得:


① 由得:
② 假設(shè)存在實(shí)數(shù),使得,則
軸知:

(舍去)
故存在實(shí)數(shù),使得
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿分15分)已知點(diǎn),一動(dòng)圓過(guò)點(diǎn)且與圓內(nèi)切.
(Ⅰ)求動(dòng)圓圓心的軌跡的方程;
(Ⅱ)設(shè)點(diǎn),點(diǎn)為曲線上任一點(diǎn),求點(diǎn)到點(diǎn)距離的最大值;
(Ⅲ)在的條件下,設(shè)△的面積為是坐標(biāo)原點(diǎn),是曲線上橫坐標(biāo)為的點(diǎn)),以為邊長(zhǎng)的正方形的面積為.若正數(shù)滿足,問(wèn)是否存在最小值,若存在,請(qǐng)求出此最小值,若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿分16分)
如圖,點(diǎn)A在直線上移動(dòng),等腰△OPA的頂角∠OPA為120°(O,P,A按順時(shí)針?lè)较蚺帕校,求點(diǎn)P的軌跡方程
    

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿分15分)
已知曲線,若按向量作平移變換得曲線;若將曲線按伸縮系數(shù)向著軸作伸縮變換,再按伸縮系數(shù)3向著軸作伸縮變換得到曲線
(1)求曲線方程;
(2)若上一點(diǎn),上任意一點(diǎn),且與曲線相切(為切點(diǎn)),
求線段的最大值及對(duì)應(yīng)的點(diǎn)坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿分12分)
已知?jiǎng)狱c(diǎn))到定點(diǎn)的距離與到軸的距離之差為.
(Ⅰ)求動(dòng)點(diǎn)的軌跡的方程;
(Ⅱ)若上兩動(dòng)點(diǎn),且,求證:直線必過(guò)一定
點(diǎn),并求出其坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知圓上的動(dòng)點(diǎn),點(diǎn)Q在NP上,點(diǎn)G在MP上,且滿足.
(I)求點(diǎn)G的軌跡C的方程;
(II)過(guò)點(diǎn)(2,0)作直線l,與曲線C交于A、B兩點(diǎn),O是坐標(biāo)原點(diǎn),設(shè) 是否存在這樣的直線l,使四邊形OASB的對(duì)角線相等(即|OS|=|AB|)?若存在,求出直線l的方程;若不存在,試說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

若橢圓與曲線無(wú)公共點(diǎn),則橢圓的離心率的取值范圍是
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

若直線y=x+b與曲線有公共點(diǎn),則b的取值范圍是
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

雙曲線的焦點(diǎn)在x軸上,兩條漸近線方程為,則雙曲線的離心率為(   )
A.5B.C.D.

查看答案和解析>>

同步練習(xí)冊(cè)答案