橢圓的中心是拋物線的頂點(diǎn),它的一個(gè)焦點(diǎn)與拋物線的焦點(diǎn)重合,它的長軸長是8,則此橢圓的方程是

[  ]

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)下列兩題選做一題.
(甲)已知橢圓短軸長為2,中心與拋物線y2=4x的頂點(diǎn)重合,橢圓的一個(gè)焦點(diǎn)恰是此拋物線的焦點(diǎn),求橢圓方程及其長軸的長.
(乙)已知菱形的一對(duì)內(nèi)角各為60°,邊長為4,以菱形對(duì)角線所在的直線為坐標(biāo)軸建立直角坐標(biāo)系,以菱形60°角的兩個(gè)頂點(diǎn)為焦點(diǎn),并且過菱形的另外兩個(gè)頂點(diǎn)作橢圓,求橢圓方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•泉州模擬)如果兩個(gè)橢圓的離心率相等,那么就稱這兩個(gè)橢圓相似.已知橢圓C與橢圓Γ:
x2
8
+
y2
4
=1
相似,且橢圓C的一個(gè)短軸端點(diǎn)是拋物線y=
1
4
x2
的焦點(diǎn).
(Ⅰ)試求橢圓C的標(biāo)準(zhǔn)方程;
(Ⅱ)設(shè)橢圓E的中心在原點(diǎn),對(duì)稱軸在坐標(biāo)軸上,直線l:y=kx+t(k≠0,t≠0)與橢圓C交于A,B兩點(diǎn),且與橢圓E交于H,K兩點(diǎn).若線段AB與線段HK的中點(diǎn)重合,試判斷橢圓C與橢圓E是否為相似橢圓?并證明你的判斷.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年廣東省江門市高二(下)調(diào)研數(shù)學(xué)試卷(文科)(解析版) 題型:解答題

在平面直角坐標(biāo)系xOy中,拋物線C:y2=8x的焦點(diǎn)為F,橢圓Σ的中心在坐標(biāo)原點(diǎn),離心率,且F是橢圓Σ的一個(gè)焦點(diǎn).
(1)求橢圓Σ的標(biāo)準(zhǔn)方程;
(2)過F作垂直于x軸的直線,與橢圓Σ相交于A、B兩點(diǎn),試探究在橢圓Σ上是否存在點(diǎn)P,使△PAB為直角三角形.若存在,請(qǐng)求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年福建省泉州市高三第二次質(zhì)量檢測(cè)數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

如果兩個(gè)橢圓的離心率相等,那么就稱這兩個(gè)橢圓相似.已知橢圓C與橢圓相似,且橢圓C的一個(gè)短軸端點(diǎn)是拋物線的焦點(diǎn).
(Ⅰ)試求橢圓C的標(biāo)準(zhǔn)方程;
(Ⅱ)設(shè)橢圓E的中心在原點(diǎn),對(duì)稱軸在坐標(biāo)軸上,直線l:y=kx+t(k≠0,t≠0)與橢圓C交于A,B兩點(diǎn),且與橢圓E交于H,K兩點(diǎn).若線段AB與線段HK的中點(diǎn)重合,試判斷橢圓C與橢圓E是否為相似橢圓?并證明你的判斷.

查看答案和解析>>

同步練習(xí)冊(cè)答案