10.在${(\root{3}{x}-\frac{2}{x})^n}$的二項(xiàng)展開式中,二項(xiàng)式系數(shù)之和為128,則展開式中x項(xiàng)的系數(shù)為-14.

分析 利用二項(xiàng)式系數(shù)和為2n,列出方程求出n;利用二項(xiàng)展開式的通項(xiàng)公式求出通項(xiàng),令x的指數(shù)為1,求出展開式中含x的系數(shù)

解答 解:∵展開式中二項(xiàng)式系數(shù)之和為2n,
∴2n=128
解得n=7,
∴($\root{3}{x}$-$\frac{2}{x}$)7展開式的通項(xiàng)為(-2)rC7rx${\;}^{\frac{7-4r}{3}}$
令$\frac{7-4r}{3}$=1,
解得r=1
故展開式中x的系數(shù)為-2C71=-14
故答案為:-14.

點(diǎn)評(píng) 本題考查二項(xiàng)式系數(shù)的性質(zhì):二項(xiàng)式系數(shù)和為2n、考查利用二次展開式的通項(xiàng)公式解決二項(xiàng)展開式的特定項(xiàng)問題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.在條件$\left\{\begin{array}{l}{x+y-3≥0}\\{x-2y+3≤0}\\{2x-y-3≤0}\end{array}\right.$下,目標(biāo)函數(shù)z=x+2y的最小值為4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.觀察下列式子:$\sqrt{1×2}<2$,$\sqrt{1×2}+\sqrt{2×3}<\frac{9}{2}\sqrt{1×2}+\sqrt{2×3}+\sqrt{3×4}<8$,$\sqrt{1×2}+\sqrt{2×3}+\sqrt{3×4}+\sqrt{4×5}<\frac{25}{2}$,
…,根據(jù)以上規(guī)律,第n個(gè)不等式是$\sqrt{1×2}+\sqrt{2×3}+…+\sqrt{n×(n+1)}<\frac{{{{(n+1)}^2}}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.設(shè)$\overrightarrow{a}$,$\overrightarrow$為向量,則“$\overrightarrow{a}$•$\overrightarrow$=0”是“$\overrightarrow{a}$⊥$\overrightarrow$”的( 。
A.充分不必要條件B.必要不充分條件
C.充分必要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.將函數(shù)$f(x)=2cos(x-\frac{π}{3})-1$的圖象向右平移$\frac{π}{3}$個(gè)單位,再把所有的點(diǎn)的橫坐標(biāo)縮短到原來的$\frac{1}{2}$倍(縱坐標(biāo)不變),得到函數(shù)y=g(x)的圖象,則圖象y=g(x)的一個(gè)對(duì)稱中心為( 。
A.$(\frac{π}{6},0)$B.$(\frac{π}{12},0)$C.$(\frac{π}{6},-1)$D.$(\frac{π}{12},-1)$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.cos2165°-sin215°=( 。
A.$\frac{1}{2}$B.$\frac{{\sqrt{2}}}{2}$C.$\frac{{\sqrt{3}}}{2}$D.$\frac{{\sqrt{3}}}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.已知f(x)=|ex-1|,又g(x)=f2(x)-tf(x)(t∈R),若滿足g(x)=-1的x有三個(gè),則t的取值范圍是(2,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.設(shè)a<0,b∈R,則“a<b”是“|a|<b”的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知拋物線C:y2=2px與點(diǎn)N(-2,2),過C的焦點(diǎn)且斜率為2的直線與C交于A、B兩點(diǎn),若NA⊥NB,則p=( 。
A.-2B.2C.-4D.4

查看答案和解析>>

同步練習(xí)冊(cè)答案