設(shè)
為定義在R上的奇函數(shù),當(dāng)
時(shí),
(b為常數(shù)),
則
等于( )
分析:由f(x)是定義在R上的奇函數(shù),當(dāng)x≥0時(shí),f(x)=2x+2x+b(b為常數(shù)),知f(0)=1+b=0,解得b=-1所以當(dāng)x<0時(shí),f(x)=-2-x+2x+1,由此能求出f(-1).
解:∵f(x)是定義在R上的奇函數(shù),
當(dāng)x≥0時(shí),f(x)=2x+2x+b(b為常數(shù)),
∴f(0)=1+b=0,
解得b=-1
∴f(x)=2x+2x-1.
當(dāng)x<0時(shí),-f(x)=2-x+2(-x)-1,
∴f(x)=-2-x+2x+1,
∴f(-1)=-2-2+1=-3.
故答案為:-3.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來(lái)源:不詳
題型:單選題
計(jì)算(-2a
)·3a的結(jié)果是( )
A -6a
B-6a
C12a
D6a
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:不詳
題型:單選題
函數(shù)
的值域?yàn)? )
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:不詳
題型:解答題
.(本小題滿(mǎn)分14分)
設(shè)
實(shí)數(shù)
、
同時(shí)滿(mǎn)足條件:
,且
,
(1)求函數(shù)
的解析式和定義域;
(2)判斷函數(shù)
的奇偶性;
(3)若方程
恰有兩個(gè)不同的實(shí)數(shù)根,求
的取值范圍
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:不詳
題型:單選題
設(shè)函數(shù)
則
( )
A.是減函數(shù) | B.是增函數(shù) | C.有最小值 | D.有最大值 |
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:不詳
題型:單選題
已知函數(shù)
有極大值和極小值,則實(shí)數(shù)
的取值范圍是( )
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:不詳
題型:單選題
下列函數(shù)中,與函數(shù)
相同的是( )
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:不詳
題型:填空題
已知集合
是滿(mǎn)足下列性質(zhì)的函數(shù)
的全體:存在非零常數(shù)
k, 對(duì)定義域中
的任意
,等式
=
+
恒成立.現(xiàn)有兩個(gè)函數(shù)
,
,則函數(shù)
、
與集合
的關(guān)系為
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:不詳
題型:填空題
設(shè)f=xm2-2,如果f是正比例函數(shù),則m=________,如果f是反比例函數(shù),則m=________,如果f(x)是冪函數(shù),則m=________.
查看答案和解析>>