分析 建立坐標系,設CM=a,得出$\overrightarrow{AM}•\overrightarrow{AN}$關于a的解析式,根據(jù)a的范圍和基本不等式得出答案.
解答 解:以AB,AD為坐標軸建立平面直角坐標系如圖:
設CM=a,則CN=$\sqrt{2-{a}^{2}}$.∴0$≤a≤\sqrt{2}$.
∴M(2,2-a),N(2-$\sqrt{2-{a}^{2}}$,2).
∴$\overrightarrow{AM}$=(2,2-a),$\overrightarrow{AN}$=(2-$\sqrt{2-{a}^{2}}$,2).
∴$\overrightarrow{AM}•\overrightarrow{AN}$=4-2$\sqrt{2-{a}^{2}}$+4-2a=8-2(a+$\sqrt{2-{a}^{2}}$).
∵2a$\sqrt{2-{a}^{2}}$≤a2+($\sqrt{2-{a}^{2}}$)2=2,
∴(a+$\sqrt{2-{a}^{2}}$)2=2+2a$\sqrt{2-{a}^{2}}$≤4.
∴a+$\sqrt{2-{a}^{2}}$≤2.
又由三角形的性質(zhì)可得MC+CN>MN=$\sqrt{2}$,當M,C,N三點共線時,MC+CN=MN=$\sqrt{2}$.
∴$\sqrt{2}≤$a+$\sqrt{2-{a}^{2}}$≤2.
∴當a+$\sqrt{2-{a}^{2}}$=$\sqrt{2}$時,$\overrightarrow{AM}•\overrightarrow{AN}$取得最大值8-2$\sqrt{2}$,當a+$\sqrt{2-{a}^{2}}$=2時,$\overrightarrow{AM}•\overrightarrow{AN}$取得最小值4.
故答案為:[4,8-2$\sqrt{2}$].
點評 本題考查了平面向量的數(shù)量積運算,基本不等式的應用,屬于中檔題.
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $-\frac{3}{2}$ | B. | $-\frac{2}{3}$ | C. | 6 | D. | -6 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com