如圖,設(shè)是圓上的動點,點軸上投影,上一點,且.當(dāng)在圓上運動時,點的軌跡為曲線. 過點且傾斜角為的直線交曲線兩點.
(1)求曲線的方程;
(2)若點F是曲線的右焦點且,求的取值范圍.
(1)
(2)

試題分析:解:(1)設(shè)點M的坐標(biāo)是,的坐標(biāo)是,因為點軸上投影,M為上一點,且,所以,且,∵在圓上,∴,整理得. 即的方程是.
(2)如下圖,直線交曲線兩點,且.

由題意得直線的方程為.
,消去.
解得.
,.
設(shè),則,
.
.
.
又由橢圓方程可知
,

,
.
,
,故,
,故.
點評:主要是考查了橢圓方程以及直線與橢圓位置關(guān)系的聯(lián)立方程設(shè)而不求的解題思想的運用,屬于難度題。
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知拋物線的焦點在拋物線上.

(Ⅰ)求拋物線的方程及其準(zhǔn)線方程;
(Ⅱ)過拋物線上的動點作拋物線的兩條切線, 切點為、.若的斜率乘積為,且,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓E:的離心率為,右焦點為F,且橢圓E上的點到點F距離的最小值為2.
(1)求橢圓E的方程;
(2)設(shè)橢圓E的左、右頂點分別為A,B,過點A的直線l與橢圓E及直線x=8分別相交于點M,N.
(ⅰ)當(dāng)過A,F(xiàn),N三點的圓半徑最小時,求這個圓的方程;
(ⅱ)若,求△ABM的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知橢圓的左右焦點為,直線AB過點且交橢圓于A、B兩點,則△的周長為_____________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

拋物線的焦點為,點為拋物線上的動點,點為其準(zhǔn)線上的動點,當(dāng)為等邊三角形時,其面積為
A.B.4C.6D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

在直角坐標(biāo)系中,射線OA: x-y=0(x≥0),
OB: x+2y=0(x≥0),過點P(1,0)作直線分別交射線OA、OB于A、B兩點.
(1)當(dāng)AB中點為P時,求直線AB的方程;
(2)當(dāng)AB中點在直線上時,求直線AB的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知點是雙曲線右支上一點,分別為雙曲線的左、右焦點,點到△三邊的距離相等,若成立,則
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在平面直角坐標(biāo)系中,設(shè)點),直線:,點在直線上移動,是線段軸的交點, 過分別作直線、,使, .

(1)求動點的軌跡的方程;
(2)在直線上任取一點做曲線的兩條切線,設(shè)切點為、,求證:直線恒過一定點;
(3)對(2)求證:當(dāng)直線的斜率存在時,直線的斜率的倒數(shù)成等差數(shù)列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知分別為雙曲線a>0,b>0)的左、右焦點,為雙曲線左支上的任意一點,若的最小值為,則雙曲線離心率的取值范圍是(   )
A.B.C.D.

查看答案和解析>>

同步練習(xí)冊答案