設(shè)x,y滿足約束條件數(shù)學(xué)公式,若目標(biāo)函數(shù)z=ax+by(a>0,b>0)的最大值為1,則數(shù)學(xué)公式的最小值為


  1. A.
    48
  2. B.
    49
  3. C.
    4數(shù)學(xué)公式
  4. D.
    7
B
分析:先作出可行域,得到目標(biāo)函數(shù)z=ax+by(a>0,b>0)的最優(yōu)解,從而得到3a+4b=1,再利用基本不等式求的最小值即可.
解答:解:∵x、y滿足約束條件,作出可行域;
目標(biāo)函數(shù)z=ax+by(a>0,b>0),
由圖可得,可行域為△ABC區(qū)域,目標(biāo)函數(shù)z=ax+by(a>0,b>0)經(jīng)過可行域內(nèi)的點C時,取得最大值(最優(yōu)解).
,解得x=3,y=4,即C(3,4),
∵目標(biāo)函數(shù)z=ax+by(a>0,b>0)的最大值為1,
∴3a+4b=1(a>0,b>0),
=(3a+4b)•()=(9++16+)≥(25+2)=49(當(dāng)且僅當(dāng)a=b=1時取“=”).
故選B.
點評:本題考查線性規(guī)劃,作出線性約束條件下的可行域,求得其最優(yōu)解是關(guān)鍵,也是難點,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)x,y滿足約束條件
x+y≤1
y≤x
y≥-2
,則z=3x+y的最大值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)x,y滿足約束條件
3x-y-6≤0
x-y+2≥0
x≥0,y≥0
,若目標(biāo)函數(shù)z=ax+by(a>0,b>0)的最大值為12,則
3
a
+
2
b
的最小值為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•奉賢區(qū)二模)(文)設(shè)x,y滿足約束條件
x≥0
y≥0
x
3a
+
y
4a
≤1
z=
y+1
x+1
的最小值為
1
4
,則a的值
1
1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)x,y滿足約束條件
x-y+2≥0
4x-y-4≤0
x≥0
y≥0
,若目標(biāo)函數(shù)z=ax+by(a>0,b>0)的最大值為6,則w=2ab的最大值為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)x,y滿足約束條件
x+y≥0
x-y+3≥0
x≤3
,則z=2x-y的最大值為
 

查看答案和解析>>

同步練習(xí)冊答案